Materials Science and Engineering Education Programme for Undergraduates

(QMUL Engineering School, NPU)

Northwestern Polytechnical University
June, 2018

Education Programme for Undergraduates (English Version)

NPU Education Programme for Undergraduates (QMUL Engineering School)

Name of Programme Materials Science and Engineering

Code of major	<u>080401H</u>		
School name	QMUL Engineering School, NPU		
Education programme planner	Y	M	D
Dean of school	Y	M	D
Director of EAC	Y	M	D

Northwestern Polytechnical University

Materials Science and Engineering Education Programme for Undergraduates (QMUL Engineering School)

1. Programme Introduction

Materials are the basic necessity of human existence. Materials science and engineering is the foundation of science, technology, and manufacturing. As a syncretic discipline hybridizing materials science, engineering, physics, and chemistry, materials science and engineering builds the foundation of aviation, marine engineering, new energy, information technology, renewable resources, and intelligent manufacturing. Materials discipline, which covers metals, ceramics, polymers, and composites, is one of the most influential and distinct disciplines in Queen Mary University of London (hereinafter as QMUL). The Materials programme of QMUL provides elite education and professional training for students with a thorough grounding in the structure of materials, the properties of materials, the performance of materials and the manufacturing processes and design. The discipline has been rated as 5-star by the British government many times. A survey conducted by the National Union of Students in 2011 showed that it ranked top 1 in the UK. The Materials programmes in Northwestern Polytechnical University (hereinafter as NPU) enjoy a high reputation and a great popularity internationally. Materials Science and Engineering of NPU is the National Key Discipline and ranked top 3 among all National Key Disciplines in the 2012 Discipline Evaluation in China. NPU also has 6 scientific research and talent-training platforms at national level.

Approved by the Ministry of Education of China, NPU and QMUL have launched a joint educational institution named Queen Mary University of London Engineering School, Northwestern Polytechnical University (hereinafter referred to as JEI), in order to provide Chinese students with typical British education that emphasises on developing undergraduate students' innovation ability. The JEI, which builds on the acknowledged expertise and experience of the two universities and their complementary research strengths in materials science, fully uses educational resource advantages and high-level international cooperation platforms of both

universities to provide a high quality degree level education in the programme of Materials Science and Engineering (080401H). The programme draws on the academic expertise of both institutions and adopts an international teaching mode with curriculum system, teaching materials, and assessment methods from the UK. The mission of this programme is to develop qualified and innovative talents who can study and work transnationally with the knowledge of natural science, materials science and engineering, and social science. Students graduate with comprehensive qualities, high professional competencies, a global horizon, a life-long study ability, and recognition of international rules.

2. Educational Aims

Under the guidance of Marxism, this programme aims to enhance morality and foster talents, to develop qualified and innovative talents who can study and work transnationally with the knowledge of natural science, materials science and engineering, and social science. Students graduate with comprehensive qualities, high professional competencies, a global horizon, a life-long study ability, and the recognition of international rules. Students who have completed their studies will be able to pursue higher degrees and research within universities in China and internationally or careers in the expanding materials science and manufacturing industry in world famous enterprises.

(1) Be equipped with solid basic knowledge and professional skills

Students should master basic principles in materials science and engineering, experimental and computing methods in the field of engineering and materials science, and knowledge of material design and making, material forming and shaping, product design, and application development. Students should be equipped with the ability to research and analyse the structure, the properties and the performance of metallic materials, inorganic nonmetallic materials, composite materials, and advanced materials. Students are able to solve technical problems in their professional field.

(2) Be equipped with international competitiveness

Students become highly proficient in English language: reading English materials and books in materials science, writing academic essays in English, and conducting technical presentations in English. The programme develops students' global horizon and the recognition of international

rules via the British teaching mode and overseas internship programme. Students can obtain, use and manage various information to conduct cross-cultural communication and cooperation with innovative abilities and international competitiveness. Students can recognize Chinese characteristics and international comparisons correctly, as well as comprehend modern China and the world objectively and comprehensively.

(3) Be equipped with the ability of life-long study

Students should stick to Marxist theory, promote and practice Socialist Core Values, recognize the responsibility of times and mission of history, and to understand ambition and dedication correctly. Students should have a strong sense of social responsibility, a healthy mental and moral state, the ability of leading and working in teams, and outstanding communicative and practical skills. Equipped with good presentation skills and writing abilities, students can communicate effectively with their peers and the public about complex engineering and scientific problems. The cultivation of consciousness of engineering ethics, and the concept of working for the wellbeing of the human beings and sustainable development can help students to adapt to dynamic changes, and master the cutting-edge knowledge and new trends in the field of materials science so as to constantly improve students' abilities.

3. Educational Requirements

(1) Master basic knowledge

Students should master: extensive knowledge in the field of materials science including materials science and engineering, the structure of materials, the properties of materials, the performance of materials, the manufacturing processes and design, and application and development; intensive professional knowledge, including surfaces and interfaces, materials chemistry, polymer materials, ceramic materials, renewable materials, and sustainable development; experimental and computational methods in the field of engineering and materials science.

(2) Develop professional skills

Students should be equipped with creative problem-solving and transferable skills and recognize the important value of materials science to engineering and other technologies. On the premise of safety, students conduct various experiments practically and are able to design, conduct, analyze and evaluate experiments and the results. Theoretically, students are familiar with the operation of all kinds of equipment used in experiments, tests, and analysis and are capable of searching, collecting and selecting data and presenting scientific and technical report. At last, students should have related abilities to conduct scientific research and develop technology and products.

(3) Develop comprehensive qualities

Students should have the abilities of international competitiveness, communication, life-long study, independent study and work, and leading and working in teams. Students can estimate the relevance, importance and reliability of various information and realize the influence of science and engineering on the future of the society worldwide. Students are capable of computing, analyzing and managing data, and communicating and cooperating transnationally with innovative ability and international competitiveness. With the concept of sustainable development in mind, students are exposed to cutting-edge technology changes in the field of materials and can improve themselves constantly in practice.

4. Qualification and Degree Certificate

Official length of the programme: 4+0 years' study in accordance with the credit management system.

Qualification and certificate: Successful students of the programme will be awarded diploma by NPU, BEng degree by NPU, and BEng degree by QMUL.

5. Fundamental Credits/ Hours

Materials Science and Engineering (080401H), total modules 52, credits 167.0, teaching hours 2738, detailed credits and hours as follows:

Module	Credit	Hour	Language
General Education	66.0	1122	Chinese/English
Discipline	86.0	1376	English
Comprehensive Literacy	6.0	96	Chinese

Comprehensive Practices	9.0	144	English
-------------------------	-----	-----	---------

6. Discipline Module

Materials Science and Engineering (080401H) discipline module, total modules 24, credits 86.0/1376, detailed modules as follows:

A. Discipline elementary modules (2 modules, 7.0 credits)

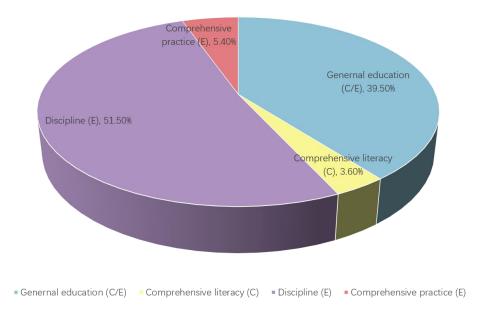
Module Code	Module Name	Credit
NXC4012	Mechanical Modelling	3.5 credits
NXC4008	Engineering Design Methods	3.5 credits

B. Discipline core modules (22 modules, 79.0 credits)

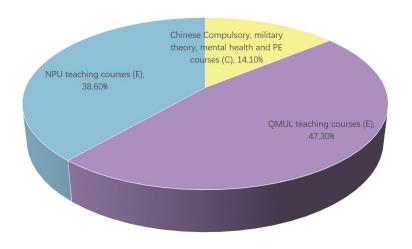
Module Code	Module Name	Credit
QXU4000	MS I-Structure and Properties	3.5 credits
QXU4001	Molecules to Materials	3.5 credits
QXU4006	MS II-Processing and Applications	3.5 credits
NXC4010	Introduction to Functional Materials	3.5 credits
QXU4011	Introduction to Engineering Materials	4.0 credits
QXU4007	Experiments in Materials 1	3.5 credits
QXU5017	Experiments in Materials 2	3.5 credits
NXC4022	Thermodynamics and Phase Transformations	3.5 credits
QXU5002	Chemistry for Materials	4.0 credits
QXU5010	Surfaces and Interfaces	3.5 credits
NXC5015	Structural Characterisation	3.5 credits
NXC5026	Metals I-Deformation and Strengthening	3.5 credits
QXU5030	Composite Materials	3.5 credits
QXU5032	Physical Properties of Polymers	4.0 credits
NXC5036	Metals II-Alloy Systems and Heat Treatment	3.5 credits
QXU6002	Materials Selection in Design	4.0 credits
QXU6007	Environmental Properties of Materials	3.5 credits
QXU6022	Ceramics	4.0 credits

NXC6023	Fatigue and Creep Failure	3.0 credits
NXC6024	Fracture Mechanics	3.0 credits
NXC6025	Manufacturing Processes	4.0 credits
QXU7027	Renewable Energy Materials	3.5 credits

7. Curriculum Modules and Credits, total 52 modules, 167.0 credits


There are 4 modules in this major, as:

- ◆ General education module : 22 modules, 66.0 credits/ 1122 hours;
- ◆ Discipline module: 24 modules, 86.0 credits/ 1376 hours;
- ◆ Comprehensive literacy module: at least 4 modules, 6.0 credits/ 96hours;
- ◆ Comprehensive practices module : 2 modules, 9.0 credits/ 144 hours;


Except for Ideological and political theory modules, Military modules, Mental Health Education module and PE modules (23.5 credits), 79.0 credits are QMUL taught modules, 64.5 credits are NPU taught modules, and 20 introduced modules are English Language, PDP, 14 discipline core modules and major project, partially satisfying the requirement of *Regulations of the People's Republic of China on Chinese-Foreign Cooperation in Running Schools* and MoE relative rules, which are:

- ◆ numbers of introduced modules (20) take 39.2% of numbers of total modules (52)(over
 1/3);
- numbers of introduced major core modules (14) take 63.6% of numbers of total major modules (22) (over 1/3);
- numbers of QMUL teaching major core modules (14) take 27.5% of numbers of total modules (52);
- ◆ class hours of QMUL teaching major core modules (824) take 30.1% of class hours of total modules (2738).

Curriculum Modules and Credits

QMUL and NPU course hours proportion

Chinese Compulsory, military theory, mental health and PE courses (C) QMUL teaching courses (E) NPU teaching courses (E)

(1) General education modules (22 modules, 66.0 credits)

A. Ideological and political theory modules (5 modules, 16.0 credits)

Module Code	Module Name	Credit
NXC2001	Chinese compulsory courses I-Essentials of Chinese Modern History	3.0 credits
	Chinese compulsory courses II-Marxism	
NXC2002	General Principle	3.0 credits

) W G G G G	Chinese compulsory courses III-Ethics and	3.0 credits
NXC2003	Fundamental of Law	5.0 credits
NW162004	Chinese compulsory courses	5.0 credits
NXC2004	IV-Fundamental of Mao Ze Dong Thoughts	5.0 credits
NXC2005	Situation and Policy	2.0 credits

B. Military modules (2 modules, 3.0 credits)

Module Code	Module Name	Credit
U34G11002	Military Theory	2.0 credits
U34P41001	Military Training	1.0 credit

C. Mental growth and personal development modules (1 module, 0.5 credits)

Module Code	Module Name	Credit	
U34G11001	Students Mental Health Education	0.5 credit	

D. Career planning and development modules (3 module, 10.5 credits)

Module Code	Module Name	Credit
QXU3111	PDP I	3.5 credits
QXU4111	PDP II	3.5 credits
QXU5111	PDP III	3.5 credits

E. University general education modules (6modules, 13.0 credits)

Module Code	Module Name	Credit
QXU3101	English Language I	3.5 credits
QXU3102	English Language II	5.5 credits

Physical Education is compulsory module in the first to the fourth semester, taking 1 credit every semester. Students can freely choose different module according to their majors, physical conditions, interesting and physical basis.

Module Code	Module Name	Credit
U31G71001	Physical education I	1.0 credit
U31G71002	Physical education II	1.0 credit
U31G71003	Physical education III	1.0 credit

U31G71004	Physical education IV	1.0 credit
-----------	-----------------------	------------

F. Level-based general education modules (5 modules, 23.0 credits)

Module Code	Module Name	Credit
NXC3000	Advanced Maths I	5.5 credits
NXC3004	Advanced Maths II	5.5 credits
NXC3002	Linear Algebra	3.0 credits
NXC3005	Mathematical Modelling and Computing	4.0 credits
NXC3001	General Physics	5.0 credits

(2) Discipline Modules (24 modules, 86.0 credits)

A. Discipline elementary modules (2 modules, 7.0 credits)

Module Code	Module Name	Credit
NXC4012	Mechanical Modelling	3.5 credits
NXC4008	Engineering Design Methods	3.5 credits

B. Discipline core modules (22 modules, 79.0 credits)

Module Code	Module Name	Credit
QXU4000	MS I-Structure and Properties	3.5 credits
QXU4006	MS II-Processing and Applications	3.5 credits
QXU4001	Molecules to Materials	3.5 credits
NXC4010	Introduction to Functional Materials	3.5 credits
QXU4011	Introduction to Engineering Materials	4.0 credits
QXU4007	Experiments in Materials 1	3.5 credits
QXU5017	Experiments in Materials 2	3.5 credits
NXC4022	Thermodynamics and Phase Transformations	3.5 credits
QXU5002	Chemistry for Materials	4.0 credits
QXU5010	Surfaces and Interfaces	3.5 credits
NXC5015	Structural Characterisation	3.5 credits

NXC5026	Metals I-Deformation and Strengthening	3.5 credits
QXU5030	Composite Materials	3.5 credits
QXU5032	Physical Properties of Polymers	4.0 credits
NXC5036	Metals II-Alloy Systems and Heat Treatment	3.5 credits
QXU6002	Materials Selection in Design	4.0 credits
QXU6007	Environmental Properties of Materials	3.5 credits
QXU6022	Ceramics	4.0 credits
NXC6023	Fatigue and Creep Failure	3.0 credits
NXC6024	Fracture Mechanics	3.0 credits
NXC6025	Manufacturing Processes	4.0 credits
QXU7027	Renewable Energy Materials	3.5 credits

(3) Comprehensive literacy modules (6.0 credits, at least 4 modules, students are suggested to choose English taught modules)

- **A. Scientific literacy modules:** subjects on natural science such as introduction to aeronautics, astronautics and navigation, environment, biology, etc. Students must take one module among "An Introduction to Aviation", "An Introduction to Astronautics", and "An Introduction to Marine Navigation". Computer fundamentals are a compulsory module.
- **B.** Modules on economics, management and law: including economy, management, legal education, etc.
- **C. Humanities modules:** including philosophy, ethics, history, culture, language, literature, society, aesthetics, life and development, etc.
- **D. Art literacy modules:** students can choose modules form "An Introduction to Art", "Music Appreciation", "Art Appreciation", "Film Appreciation", "Drama Appreciation", "Dance Appreciation", "Calligraphy Appreciation", and "Chinese Opera Appreciation", among which "The Presentation of the Art of Peking Opera" is compulsory.

It is suggested that students should choose English taught modules, from all four categories above. Each module offered in each semester will be included in the course selection manual.

(4) Comprehensive practices (2 modules, 9.0 credits)

A. Design for graduation (1 module, 8.0 credits)

Module Code	Module Name	Credit
QXU6021	Materials Project	8.0 credits

B. Scientific research project modules (1.0 credit)

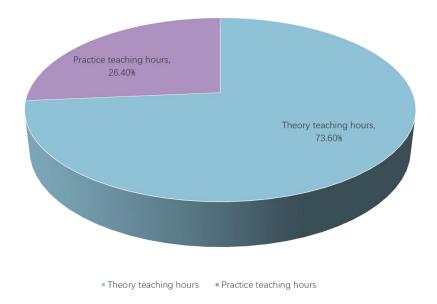
Students can participate in a variety forms of scientific research training including innovative research programmes, academic competition, innovative and business training plan for college students, academic competitions, "Peak Experience Plan", social research, and scientific research project. Students are encouraged to participate in a variety forms of central practice such as overseas practice, international internship, winter and summer camp.

Curriculum Modules and Credits Table

				Test Ap	proach		our bution]	Hour Di	stributi	on for S	emester	s	
Module	Code of Course	Name of Course	Credit/ Hour			215011	Practic								
	Course		11041	Exam√	Test√	Teach	e (Comp uter)	1st	2nd	3rd	4th	5th	6th	7th	8th
				G	eneral e	ducatio									
	NXC2001	Chinese Compulsory Modules I	48/3.0	√		48			48/3.0						
	NAC2001	Essentials of Chinese Modern History	40/3.0	,					40/3.0						
	NXC2002	Chinese Compulsory Modules II Marxism General Principle	48/3.0	V		24	24			48/3.0					
	NXC2003	Chinese Compulsory Modules III Ethics and Fundamental of Law	48/3.0	√		24	24		48/3.0						
	NXC2004	Chinese Compulsory Modules IVFundamental of Mao Ze Dong Thoughts	80/5.0	√		40	40				80/5.0				
	NXC2005	Situation and Policy	32/2.0		√	32				32/2.0					
	U34G11002	Military Theory	32/2.0	√		32		32/2.0							
	U34P41001	Military Training	16/1.0		√			3w/1.0							
 ຄ	U34G11001	Students Mental Health Education	8/0.5	V		8			Sele	ct under	the guid	lance of	tutor		
General education	QXU3111	PDP I	56/3.5		√	56		24/1.5	32/2.0						
educat	QXU4111	PDP II	56/3.5		√	56				24/1.5	32/2.0				
ion	QXU5111	PDP III	56/3.5		√	56						24/1.5	32/2.0		
	QXU3101	English Language I	56/3.5		√	56		56/3.5							
	QXU3102	English Language II	88/5.5		√	88			88/5.5						
	U34G11002	Physical Education I	32/1.0	V			32	32/1.0							
	U34P41001	Physical Education II	32/1.0	V			32		32/1.0						
	U31G71001	Physical Education III	32/1.0	V			32			32/1.0					
	U31G71002	Physical Education IV	32/1.0	V			32				32/1.0				
	NXC3000	Advanced Maths I	88/5.5	V		78	10	88/5.5							
	NXC3004	Advanced Maths II	88/5.5	√		88			88/5.5						
	NXC3001	General Physics	82/5.0	V		50	32	50/3.0	32/2.0						
	NXC3002	Linear Algebra	48/3.0	1		48		48/3.0							
	NXC3005	Mathematical Modelling and Computing	64/4.0	V		40	24		64/4.0						
		Total	1122/66.0												
Discipline					Disci	pline									
pline	NXC4012	Mechanical Modelling	56/3.5	√		46	19			56/3.5					

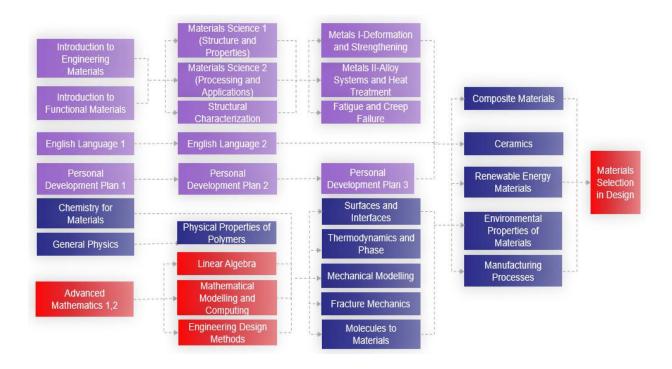
	U01L11001	An Introduction to Aviation													
	NXC1003	An Introduction to Classical Music of China													
Comprehen sive literacy (Elective courses)	NXC1002	The Copy and Creation of Traditional Chinese Realistic Painting	NPU an	d QMES		courses a								opment c	ourses.
	NXC1001	The Presentation of the Art of Peking Opera													
				Con	nprehen	sive litei	racy								
		Total	1376/86.0			ning Pr	10.01								
	QXU7027	Renewable Energy Materials	56/3.5	√		56									56/3.5
	NXC6025	Manufacturing Processes	64/4.0	√ 		54	10							64/4.0	56/2.5
	NXC6024	Fracture Mechanics	48/3.0	√ ,		40	8							48/3.0	
	NXC6023	Fatigue and Creep Failure	48/3.0	√ ,		40	8								48/3.0
	QXU6022	Ceramics	64/4.0	√		56	8							64/4.0	
	QXU6007	Environmental Properties of Materials	56/3.5	√		56									56/3.5
	QXU6002	Materials Selection in Design	64/4.0	√		48	16							64/4.0	
	NXC5036	Metals II Alloy Systems and Heat Treatment	56/3.5	V		40	16						56/3.5		
	QXU5032	Physical Properties of Polymers	64/4.0	√		56	8					64/4.0			
	QXU5030	Composite Materials	56/3.5	√		56							56/3.5		
	NXC5026	Metals I Deformation and Strengthening	56/3.5	√		40	16					56/3.5			
	NXC5015	Structural Characterisation	56/3.5	√		56							56/3.5		
	QXU5010	Surfaces and Interfaces	56/3.5	√		48	8					56/3.5			
	QXU5002	Chemistry for Materials	64/4.0	√		56	8					64/4.0			
	NXC4022	Thermodynamics and Phase Transformations	56/3.5	V		56					56/3.5				
	QXU5017	Experiments in Materials 2	56/3.5	√			56						56/3.5		
	QXU4007	Experiments in Materials 1	56/3.5	√			56			56/3.5					
	QXU4011	Introduction to Engineering Materials	64/4.0	√		48	16	24/1.5	40/2.5						
	NXC4010	Introduction to Functional Materials	56/3.5	√		40	16			56/3.5					
	QXU4001	Molecules to Materials	56/3.5	√		56					56/3.5				
	QXU4006	MS II Processing and Applications	56/3.5	√		56					56/3.5				
	QXU4000	MS I Structure and Properties	56/3.5	√		56				56/3.5					
	NXC4008	Engineering Design Methods	56/3.5	√		40	16			56/3.5					

	U02L11001	An Introduction to Astronautics										
	U03L11001	An Introduction to Marine Navigation										
	NXC1004	Fundamentals of Computer										
	NXC1005	Inorganic Chemistry										
	NXC1006	Fundamentals of Organic Chemistry										
	NXC1007	Physical Chemistry										
	NXC1008	3D Print										
		Total	96/6.0									
				Com	prehens	sive prac	tice					
Comprehen	QXU6021	Material Project	128/8.0		√							128/8.0
practice		Scientific Research	16/1.0 Participate under the guidance of tutor									
		Total	144/9.0									


Total hours / total credits 2738/167.0

Reference: Code QX courses are taught by QMUL. Code NX courses are taught by NPU. Code U courses are Chinese Compulsory Courses, Mental Health Military Theory courses from MoE, as well as some elective courses.

8. Mode of Teaching


Taking the use of Britain's high education concept to cultivate innovative bachelor talents for reference, multiple education modes are practiced, such as theory teaching, experiment teaching, case study, comprehensive application and open-experimental instruction, in all modules except for Chinese Compulsory and PE courses. Rather than relying on the traditional reception teaching, we adopt the student-centred teaching mode, which highlights on fostering students' ability of self-study, problem-solving and hands-on practice. JEI programmes intend to motivate students' inner impetus, discover their interests for knowledge and cultivate their lifelong learning as well as working ability.

Discipline Modules Teaching Hours Proportion

9. Curriculum Logical Diagram

In accordance with the aim "to develop qualified and innovative talents who can study and work transnationally with the knowledge of natural science, materials science and engineering, and social science. Students graduate with comprehensive qualities, high professional competencies, a global horizon, a life-long study ability, and the recognition to international rules", major courses are divided into several modules, support and linked with each other, emphasizing on principle specialty, meeting the education standard of professional, composite and entrepreneurial talents.

Materials Science and Engineering (QMUL Engineering School, NPU) Curriculum Syllabus

(Arranged by previous modules in order)

Module Title	Personal Development Plan 1
Summary Information	
Module Code	QXU3111
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall & Spring
Teaching Profile	56 hours of seminars - 25 x 2 hrs seminars + 6 hours lectures = 56 hrs
Course Type	Technical
Textbooks and References	Cottrell, S. (2010) Skills for success: personal
Textbooks	development planning and employability. New York;
	Palgrave Macmillan
	Cottrell, S. (2008) The study skills handbook. New York;
	Palgrave Macmillan
	Hepworth, A. (2013) How to study at university and
	college: using personal development planning and how to
	prepare for employment. Lancashire; Universe of
	Learning
	Smale, B. and Fowlie, J. (2009) How to succeed at
	university: an essential guide to academic skills and
	personal development. London; Sage.
References/Articles	
Course Description	The Personal Development Plan (PDP) modules provide
	a structured and supported process undertaken by
	individual students to reflect upon their own learning,
	performance and/or achievement and to plan for their
	personal, educational and career development. The
	emphasis of the PDP programme, which is designed
	specifically for the Joint Programme (JP) is compulsory
	for all JP students, is to enable them to improve their

	general skills for study and career management, and to relate their learning to a wider context. In addition to the academic subject content, the JP in Materials Science and Engineering at NPU will develop students as independent learners and lay a solid foundation for their subsequent professional development. Academic and professional development includes knowledge, understanding and skills, each of which underpins a set of activities. These are tailored to the JP and developed in conjunction with lecturers delivering the programme's academic content. The underlying knowledge, understanding and skills include: Academic skills and techniques; Communication and interpersonal skills; Responsibility, leadership and management skills; Academic and professional conduct.
Course Arrangement	
(Chapters/hours)	
Semester 1	
Week 1	
Course Overview (2 hrs)	Course introduction – welcome and essential course information, learning outcomes and objectives
Week 2	
Effective Time Management	Essential Study Skills - SMART targets, time management
Week 3	
Academic Register	Introduction to formal English register, nominalisation and passive voice
Week 4	
Developing Vocabulary	Methods for developing academic vocabulary, including parts of speech, dependent prepositions, collocations
Week 5	
Effective Presentations (1)	Structure and organisation / delivery and visual aids. Assessment task: Prepare group presentations on evaluation of existing materials (week 7)
Week 6	
Effective Presentations (2)	Producing visual aids / dealing with questions / dealing
Producing visual aids / dealing	with nerves
with questions (2 hrs)	
Presentation Practice	Practicing structuring and organising effective

	presentations
Week 7	
Short Writing Task PORTFOLIO	Assess the potential solutions for the reduction of carbon emission. Practice with referencing / bibliographies; and synthesis
Week 8	
Effective Lecture	Study listening. Structure and organisation. Signposting
Comprehension (1)	language. Staging and signal language. Taking effective notes, asking questions. Post lecture work -study groups to consolidation comprehension.
Week 9	
Effective Lecture	Study listening. Pre-lecture preparation. Synopsis'.
Comprehension (2)	Making predictions.
Week 10	
Overview of Referencing and citation	Why do we do it? Why is it important? Key features.
Week 11	
Assessment	Group presentations
Week 12	
Assessment	Group presentations
Final Overview (3 hrs)	Review of semester 1 – projection to semester 2
Semester 2	
Week 1	
Welcome back	Overview and introduction to semester 2
Week 2	
Seminar Participation 1	Identify the features of successful university seminars; focus on the functional language typically used in academic seminars
Week 3	
What is an academic argument?	Claim, premises, outcome. Structuring effective academic arguments
Week 4	
Seminar Participation 2	Practise putting forward and justifying a point of view; practise taking part in an academic discussion in a panel format / practise leading a seminar discussion, producing handouts / stimulating discussion
Week 5	
Study skills – approach to	Searching for information. Assessing reliability,

research	authority, credibility. Accessing databases. Focus of
	databases available to Materials Science students.
Week 6	
Experimental design	Designing and occupying a research space. Considering
	variables and sample selection.
Week 7	
Overview of gathering	Focus on designing experimental questionnaires
quantitative data	
Week 8	
Discussion language	Turn taking, offering opinions, groups discussions and debates
Week 9	
Research pro-seminars	Structure and content organisation. Task overview.
Week 10	
Assessment	Group presentations
Week 11	
Assessment	Group presentations
Week 12	
Review of semester. Looking	Feedback, course summary, overview of year 2
forward to next year	
Final Overview (3 hrs)	Review of semester 1 – projection to semester 2
Experimental & Practical	N/A
Section	
Hours	Contents
Learning Outcomes	
	Public speaking and presentation skills, including use of
	presentation tools, such as Microsoft Powerpoint or
	others, to research and present on a range of current
	topics. Production of video on a range of topics,
	providing students with the opportunity to be creative
	and precise in the key messages they wish to convey.
	Critical thinking, especially in reading and writing, and
	production of evidenced judgements.
	Interpretation and evaluation of data from various
	sources for use in specific academic tasks.
	Use of oral, written and electronic methods for the
	communication for subject specific information
	Effective team-working with fellow students
Other Information	

Assessment Profile	
Grading Policy	
Coursework	60% coursework - project
Practical experiments	40% oral presentation
Examination (written)	

Module Title	Personal Development Plan 2
Summary Information	
Module Code	QXU4111
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall & Spring
Teaching Profile	56 hours of seminars - 25 x 2 hrs seminars + 6 hours
	lectures = 56 hrs
Course Type	Technical
Textbooks and References	Cottrell, S. (2010) Skills for success: personal
Textbooks	development planning and employability. New York;
	Palgrave Macmillan
	Cottrell, S. (2008) The study skills handbook. New York;
	Palgrave Macmillan
	Hepworth, A. (2013) How to study at university and
	college: using personal development planning and how to
	prepare for employment. Lancashire; Universe of
	Learning
	Smale, B and Fowlie, J. (2009) How to succeed at
	university: an essential guide to academic skills and
	personal development. London; Sage.
References/Articles	
Course Description	The Personal Development Plan (PDP) modules provide
	a structured and supported process undertaken by
	individual students to reflect upon their own learning,
	performance and/or achievement and to plan for their
	personal, educational and career development. The
	emphasis of the PDP programme, which is designed
	specifically for the Joint Programme (JP) is compulsory
	for all JP students, is to enable them to improve their
	general skills for study and career management, and to
	relate their learning to a wider context. In addition to the
	academic subject content, the JP in Materials Science and
	Engineering at NPU will develop students as independent
	learners and lay a solid foundation for their subsequent
	professional development. Academic and professional
	development includes knowledge, understanding and
	skills, each of which underpins a set of activities. These
	are tailored to the JP and developed in conjunction with
	lecturers delivering the programme's academic content.
	The underlying knowledge, understanding and skills

	include: Academic skills and techniques; Communication and interpersonal skills; Responsibility, leadership and management skills; Academic and professional conduct.
Course Arrangement	
(Chapters/hours)	
Semester 1	
Week 1	
Course Overview (2 hrs)	Course introduction – welcome and essential course
	information, learning outcomes and objectives
Week 2	
Effective Study Management	Essential Study Skills - NEW SMART targets,
	maintaining discipline
Week 3	
Advanced Academic Register	Advanced formal English register
Week 4	
Expanding advanced Vocabulary	Further methods for developing academic vocabulary
Week 5	
Presenting research findings (1)	Structure and organisation / delivery and visual aids.
	Describing results and procedures
Week 6	
Presenting research findings (2)	Discussing results and conclusions
Presentation Practice	Practicing structuring and organising effective presentations
Week 7	
Short Writing Task	Assess the validity of research findings
PORTFOLIO	
Week 8	
Effective Lecture	Developing advanced lecture comprehension
Comprehension (3)	
Week 9	
Effective Lecture	Developing advanced lecture comprehension
Comprehension (4)	
Week 10	

Advanced Referencing and	Footnoting system and cross referencing
citation	
Week 11	
Assessment	Group presentations
Week 12	1 1
Assessment	Group presentations
Final Overview (3 hrs)	Review of semester 1 – projection to semester 2
Semester 2	1 3
Week 1	
Welcome back	Overview and introduction to semester 2
Week 2	
Seminar Participation	Peer reviewing research proposals
Week 3	
Advanced academic argument?	Generating supported positions and stances
Week 4	
Seminar Participation 2	Reviewing the efficacy and legitimacy of broad and narrow research spaces
Week 5	
Accessing databases	Accessing databases. Focus of databases available to Materials Science students.
Week 6	
Advanced experimental design	Designing quantative research tools
Week 7	
Experimental procedures	Focus on designing experimental procedures
Week 8	
Developing Discussion language	Turn taking, offering opinions, groups discussions and debates
Week 9	
Research pro-seminars	Structure and content organisation. Task overview.
Week 10	
Assessment	Group presentations
Week 11	
Assessment	Group presentations
Week 12	
Review of semester. Looking	Feedback, course summary, overview of year 2
forward to year 3	
Final Overview (3 hrs)	Review of semester 1 – projection to semester 2
Experimental & Practical	N/A

Section	
Hours	Contents
Learning Outcomes	
	Public speaking and presentation skills, including use of presentation tools, such as Microsoft PowerPoint or others, to research and present on a range of current topics. Production of video on a range of topics, providing students with the opportunity to be creative
	and precise in the key messages they wish to convey.
	Critical thinking, especially in reading and writing, and production of evidenced judgements.
	Interpretation and evaluation of data from various
	sources for use in specific academic tasks.
	Use of oral, written and electronic methods for the
	communication for subject specific information
	Effective team-working with fellow students
Other Information	
Assessment Profile	
Grading Policy	
Coursework	60% coursework - project
Practical experiments	40% oral presentation
Examination (written)	

Module Title	Personal Development Plan 3
Summary Information	
Module Code	QXU5111
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall & Spring
Teaching Profile	28 hours of lectures, 28 hours of seminars
Course Type	Technical
Textbooks and References	Cottrell, S. (2010) Skills for success: personal
Textbooks	development planning and employability. New York;
	Palgrave Macmillan
	Cottrell, S. (2008) The study skills handbook. New York;
	Palgrave Macmillan
	Hepworth, A. (2013) How to study at university and
	college: using personal development planning and how to
	prepare for employment. Lancashire; Universe of
	Learning
	Smale, B and Fowlie, J. (2009) How to succeed at
	university: an essential guide to academic skills and
	personal development. London; Sage.
References/Articles	
Course Description	The Personal Development Plan (PDP) modules provide
	a structured and supported process undertaken by
	individual students to reflect upon their own learning,
	performance and/or achievement and to plan for their
	personal, educational and career development. The
	emphasis of the PDP programme, which is designed
	specifically for the Joint Programme (JP) is compulsory
	for all JP students, is to enable them to improve their
	general skills for study and career management, and to
	relate their learning to a wider context. In addition to the
	academic subject content, the JP in Materials Science and
	Engineering at NPU will develop students as independent
	learners and lay a solid foundation for their subsequent
	professional development. Academic and professional
	development includes knowledge, understanding and
	skills, each of which underpins a set of activities. These
	are tailored to the JP and developed in conjunction with
	lecturers delivering the programme's academic content.
	The underlying knowledge, understanding and skills
	include: Academic skills and techniques; Communication

	and interpersonal skills; Responsibility, leadership and management skills; Academic and professional conduct.
Course Arrangement (Chapters/hours)	
Experimental & Practical Section	N/A
Hours	Contents
Learning Outcomes	
	Public speaking and presentation skills, including use of presentation tools, such as Microsoft Powerpoint or others, to research and present on a range of current topics. Production of video on a range of topics, providing students with the opportunity to be creative and precise in the key messages they wish to convey. Critical thinking, especially in reading and writing, and production of evidenced judgements. Interpretation and evaluation of data from various sources for use in specific academic tasks. Use of oral, written and electronic methods for the communication for subject specific information Effective team-working with fellow students
Other Information	
Assessment Profile	
Grading Policy	
Coursework	60% coursework - project
Practical experiments	40% oral presentation
Examination (written)	

Module Title	Introduction to Engineering Materials
Summary Information	
Module Code	QXU4011
Class Hours/Credit(CN/UK)	64 hours/4 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall & Spring
Teaching Profile	40 hours' lectures, 16 hours' tutorials, 8 hours' seminars
Course Type	Technical
Textbooks and References	Michael F Ashby & D. R, H. Jones (2012). Engineering
Textbooks	materials. 1, An introduction to their properties,
	applications and design. 4th. Butterworth-Heinemann.
	Michael F Ashby & D. R, H. Jones (2012). Engineering
	materials. 2, An introduction to microstructures and
	processing. 4th. Butterworth-Heinemann.
	James Newell (2009). Essentials of modern materials
	science and engineering, John Wiley & Sons
References/Articles	N/A
Course Description	This module provides an introduction to the materials
	used in engineering design, classes of materials,
	understanding material properties and how this relates to
	the structure and how properties depend upon the
	processing route employed. The course will provide a
	framework for a suitable selection of materials
	developing problem solving skills and team working
	skills in applications that are relevant to aerospace,
	mechanical and general engineering. The context of
	engineering materials in terms of global issues and future
	challenges is introduced.
Course Arrangement	
(Chapters/hours)	
Chapter 1 / 2 hours	Global issues in Materials Science
	Impact of materials in society
	Global challenges and materials solutions
Chapter 2 / 6 hours	Introduction to Materials Science
+ 8 hours' seminars	
	Material behaviour:
	i) Classes of materials and how they come about (i.e.
	bonding)
	33

	ii) Types of properties – mechanical, thermal,
	electrical, optical
	iii) Methods of processing – melting/casting,
	deformation/forming, fabrication, assembly
Chapter 3 / 10 hours	Structure-property relations:
	Relationship between structure properties and
	processing:
	i) Why the differences between materials? Atomic
	bonding – leads to mechanical, electrical, thermal
	props, processing / processability
	ii) Properties depend on microstructure as well as
	composition – related to processing
	iii) Difference between strength, stiffness and
	toughness. Shape factors in design – link to
	mechanics and modelling
	iv) Outline of failure mechanisms, fracture, creep,
	fatigue, wear (lifetime – from Engineering
	perspective i.e. design constraints of lifetime and
	inspection – not mechanisms of failure)
C1	Due de
Chapter 4 / 6 hours	Product design issues
Chapter 4 / 6 hours	Product design (introductory ideas only)
Chapter 4 / 6 hours	
Chapter 4 / 6 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products
Chapter 4 / 6 hours	Product design (introductory ideas only) i) Functionality
Chapter 4 / 6 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products
Chapter 4 / 6 hours Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy
-	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing
-	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples
-	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials
Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods
Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods Engineering design limited by material properties
Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods Engineering design limited by material properties Examples of application limited by material properties
Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods Engineering design limited by material properties Examples of application limited by material properties i) Stiffness
Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods Engineering design limited by material properties Examples of application limited by material properties i) Stiffness ii) Stress
Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods Engineering design limited by material properties Examples of application limited by material properties i) Stiffness ii) Stress iii) Thermal properties
Chapter 5 / 2 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods Engineering design limited by material properties Examples of application limited by material properties i) Stiffness ii) Stress iii) Thermal properties iv) Temperature
Chapter 5 / 2 hours Chapter 6 / 10 hours	Product design (introductory ideas only) i) Functionality ii) Ergonomics and marketability of products iii) Innovation and business strategy iv) The value chain – design, manufacture, marketing Case study examples Everyday products that use a combination of materials and manufacturing methods Engineering design limited by material properties Examples of application limited by material properties i) Stiffness ii) Stress iii) Thermal properties iv) Temperature v) Weight

	1', 61'6
	quality of life
	ii) Financial impact – cost effectiveness of solution
	iii) Environmental impact – total energy budget, life
	cycle analysis
Experimental & Practical	
Section	
Hours / 16 hours	Deconstruction of everyday product
	Group exercise on selected product
	Materials selection
	Manufacturing methods
	Product evaluation
Learning Outcomes	
	To enable students to understand why different materials
	exhibit specific key structural properties. To educate
	students about the most significant routes of
	manufacturing components using a wide range of
	different (metallic, polymer, composite and ceramic)
	materials. To educate students in strategies to be creative,
	to process ideas and to work successfully in a team
	environment. To develop analytical skills that allow
	students to examine and evaluate engineering problems.
	To develop strategies that will enable students to solve
	demanding design led problems in the field of
	Engineering.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	Introduction to Functional Materials
Summary Information	
Module Code	NXC4010
Class Hours/Credit(CN/UK)	56 Hours/3.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Spring
Teaching Profile	40 hours Lectures / 16 hours' tutorial example classes
Course Type	Technical
Textbooks and References	Deborah D L Chung (2010), Functional Materials:
Textbooks	Electrical, Dielectric, Electromagnetic, Optical and
	Magnetic Applications World Scientific Publishing,
	ISBN-13: 978-9814287166
References/Articles	
Course Description	Introducing functional materials, including insulators,
	piezoelectrics, pyroelectrics, microwave dielectrics and
	electro-optical ceramics; ionic conductors for fuel cells;
	semiconductors and the basics of LED, solar cell and
	laser devices; organic electronics; superconductors;
	shape memory alloys and magnetic materials.
Course Arrangement	
(Chapters/hours)	
Chapter 1: / 5 hours	Elementary quantum mechanics: electronic structure of
	the atom, confined states, density of states, photon,
	phonon and plasmon interactions
Chapter 2: / 5 hours	Elementary Solid State Science: The arrangement of
	ions in ceramics, spontaneous polarisation, transitions,
	defects in crystals, electrical conduction, quantum
	conduction and tunnelling, polarisation mechanisms,
	thermal conduction
Chapter 3: / 4 hours	Basis of diodes and transistors, current / voltage
_	characteristics, fermi-level, Boltzmann temperature
	effects, concept to dielectric, semi-conduction and
	conduction
Chapter 4: / 4 hours	Ceramic Conductors: High-temperature heating
	elements, Ohmic resistors, varistors, fast-ion conductors,
	gas sensors, superconductors
Chapter 5: / 4 hours	Dielectrics and Insulators: Background, dielectric
	strength, capacitors, low-er ceramics, medium-er

	ceramics, high-permittivity ceramics
Chapter 6: / 4 hours	Piezoelectrics: Background, piezoelectric parameters,
	PZT and other important commercial piezoelectrics,
	applications
Chapter 7: / 4 hours	Pyroelectrics: Background, IR detection,
	thermos-electrics including polymers?
Chapter 8: / 4 hours	Magnetic materials: Background, ferrites, magnetic properties, processing ferrites, applications
Chapter 9: / 4 hours	Electro-Optic materials: Background, PLZT,
	applications including polymers
Chapter 10: / 4 hours	New materials: smart materials, multiferroics
Expanimental & Propries	
Experimental & Practical Section	
Hours: 16 hours	Coursework – exercises in practice calculation (computer
	software) and recognising behaviour (I-V characteristics.
	Read and report some classic articles.
Learning Outcomes	
Other Information	
Assessment Profile	
Grading Policy	100 grades
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	English Language 1
Summary Information	
Module Code	QXU3101
Class Hours/Credit(CN/UK)	56 hours/3.5 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	Lectures + Seminars = 56 hours
	1 introductory session x 2hrs + 36 sessions x 1.5 hrs
	= 56 hours
Course Type	Technical
Textbooks and References	Bailey, S. (2006) Academic Writing: A Handbook
Textbooks	for International Students (2nd Edition). Abingdon:
	Routledge.
	Cottrell, S. (2008) The Study Skills Handbook (3rd
	Edition). London: Palgrave Study Guides
	Dunn, M., Howey, D. &Ilic, A. (2014) English for
	Mechanical Engineering in Higher Education.
	Reading: Garnet.
	Gillett, A., Hammond, A. &Martala, M. (2009)
	Inside Track to Successful Academic Writing.
	London: Pearson Education.
	Lynch, T. (2004) Study Listening: Understanding
	Lectures and Talks in English (2nd Edition).
	Cambridge: CUP
	McCarter, S. & Jakes, P. (2009) Uncovering EAP.
	Oxford: Macmillan.
	Oshima, A. & Hogue, A. (2006) Writing Academic
	English (4th Edition). London: Longman.
	Smith, R. H. C. (2014) English for Electrical
	Engineering in Higher Education. Reading: Garnet
	Wallace, M.J. (2004) Study Skills in English.
	Cambridge: CUP
References /Articles	
Course Description	The JP in Materials Science and Engineering at NPU
	will be taught in English. This module will develop
	the English language skills of students on the JP,
	extending them and ensuring that students are
	capable of meeting the demands of studying and
	being examined in English. The module will develop
	students' receptive skills of reading and listening, as
	well as the productive skills of spoken and written

	English, and will offer practice in formal and informal communication, using presentations, essays and English clubs. There will be an emphasis on scientific English.
Course Arrangement (Chapters/hours)	Selentine English.
Week 1	
1.Welcome and introduction to course (2hrs)	Course overview. Introduction to Portfolios Demonstration of QM Plus / QMHub.Demonstration of making a portfolio page / uploading materials
2. Adjusting to UK style studying	Note taking and class discussion on lecture topic: Looking ahead. SMART analysis for students.
3. Typical Problems for Chinese Learners	Challenges for Chinese Students taking a subject degree in English
Week 2	
4. Assessment Preparation	Focus on short answer questions for assessment – approaches and techniques
5. Tackling Assessment tasks	In class practice on exam taking techniques / answering SAQ's
6. Taking a Critical Thinking Approach	Blooms Taxonomy. Approaches to critical thinking and evaluation
Week 3	
7. Lecture Comprehension Academic Listening & Note-taking	Materials Science can Save the World A lecture on the significance and history of Materials Science. Develop academic lectures listening; note taking skills: Cornell Method
8. Precision in English	Accuracy in Writing: The mechanics of English. Precision in writing – overview of written accuracy, mechanics of sentence/lesson on parts of speech and sentence structure
9. What does it mean to Know a Word?	Knowing a word: (including affixes, connotation, etc. exercises); Noun phrases/prep phrases + punctuation; Vocab – consolidation of noun phrases and cohesive devices
Week 4	
10. Hunting the Elements	Periodic Success- The Hidden Beauty of the Periodic Table
11. What makes good academic writing?	What makes good Academic Writing? A two-part lesson. Part 1: Analysing different text types/styles

	and features of academic writing
12 Variation Danta of Carrel	
12. Knowing Parts of Speech	What Makes Effective Academic Writing (2):
	The Mechanics of English
	GOOD GRAMMAR – An ability to construct
	effective, accurate sentences.
Week 5	
13. The Language of Computing	Concepts and vocabulary explored through the
	computing language. Application and function to
	materials science students and researchers.
14. The Language of Computing	Task based activation of concepts and vocabulary
	explored through the medium of computing
	language. Application and function to materials
	science students and researchers.
15. The language of Mathematics	Task based activation of concepts and vocabulary
· -	explored through the medium of mathematics.
	Application and function to materials science
	students and researchers through past papers and
	practical exercises
Week 6	
16. The language of Electrical	Concepts and vocabulary explored through the
Techniques	electrical techniques. Application and function to
	materials science students and researchers.
17. The language of Electrical	Task based activation of concepts and vocabulary
Techniques	with a focus on electrical techniques. Application
	and function to materials science students and
	researchers through past papers and practical
	exercises
18. Computers, Electronics and	Review and consolidation of week's materials and
Mathematics	concepts. Mini project work.
Week 7	
19. Focus on Lifecycle Assessment	What is lifecycle assessment? Lecture covering the
Introduction of Portfolio Task	basic concepts regarding lifecycle assessment
20. Writing definitions and	Case Study of LCA Preparation for PORTFOLIO
describing	TASK – conduct an LCA that describes and assesses
0	the lifecycle of a product
21: Describing objects and materials	Describe objects and materials, classify materials
Z commission of the same materials	and describe processes. The latter will be further
	unpacked in semester 2 basic language and activities
	to ensure clarity and accuracy in students'
	_
	descriptions

Week 8	
22. Describing a process	Focus on description language, logical order, accuracy in and brevity in definition writing
23. Describing a process	Make notes – produce a set of instructions describing
	the test procedure/treatment process
24. Descriptive writing	Technical language for describing a process
Week 9	
25. Understanding the carbon	What is your Carbon Footprint? Overview of
Footprint	synthesis and approaches to research. Bringing ideas together.
26. Using Sources	Reading as a conversation to develop critical reading skills/ consider the sources students are reading at the moment and how they interact/differentiate between text types, authority and credibility/practice in synthesising students' current module readings
27. Interacting with	Developing the skills of text interaction –
sources (synthesis)	paraphrasing and summarising. Formal academic register.
Week 10	
28. Reducing our Carbon Footprint	Assessing the various approaches to climate change prevention and carbon footprint reduction
29. Introduction to paraphrasing and	Reporting verbs, facts vs opinion, commentary and
summarising	synthesis
30. Intro to referencing & Citation	Introduction to referencing and citation – Vancouver reporting verbs/boosting voice/hedging. Introduction to referencing & citation. Vancouver reporting verbs / boosting voice / hedging
Week 11	
31: Portfolio task	Short writing task – PORTFOLIO – Assess the potential solutions for the reduction of carbon emissions. Review extracts from various sources which discuss approaches to climate change and the reduction of the carbon footprint.
32: Assessment – Group	Group Presentations. Group presentations on
Presentations	prepared academic topic
33. Assessment – Group	Group Presentations. Group presentations on
Presentations	prepared academic topic
Week 12	
34: Short Writing	Scientists vs Engineers Debate; Group discussion in
Task –PORTFOLIO Video: Profiles	response to short extracts from a variety of sources
of scientists and engineers	

35. Review and consolidation	Review of semester, feedback and tutorials
36: Review and consolidation	Review of semester, feedback and tutorials
37: Review and consolidation	Review of semester, feedback and tutorials
Experimental & Practical Section	N/A
Hours	Contents
Learning Outcomes	
	English language ability at a level to lead to
	competence in meeting the requirements of the joint
	degree programme: QMUL BEng in Materials
	Science and Engineering and NPU BEng degree.
	Specific focus on scientific lexis in order to enhance
	academic performance in the joint degree
	programme.
	Read critically and show ability to evaluate sources
	and to formulate ideas in writing
	Understand and explain technical characteristics and
	complex ideas.
	Participate in, and to an intermediate level, lead
	academic discussions based on readings.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	Written assignment (1200 words) 60%
	Portfolio - 4 pieces of work including reading,
	speaking, writing and listening (1000 words) 40%
Practical experiments	
Examination (written)	

Module Title	English Language 2
Summary Information	
Module Code	QXU3102
Class Hours/Credit(CN/UK)	88 hours/3.5 credits
Responsible Institution	QMUL
Opening Semester	Spring
Teaching Profile	Lectures + Seminars = 88 hours *44 lectures + 44 hours seminars
	1 introductory lecture session x 2.5 hrs + Final lecture 2 hrs + 14 TA
	Sessions x 2hrs + 37 sessions x 1.5 hrs = 88 hours
Course Type	Technical
Textbooks and References	Bailey, S. (2006) Academic Writing: A Handbook for
Textbooks	International Students (2nd Edition). Abingdon:
	Routledge.
	Cottrell, S. (2008) The Study Skills Handbook (3rd
	Edition). London: Palgrave Study Guides
	Dunn, M., Howey, D. &Ilic, A. (2014) English for
	Mechanical Engineering in Higher Education. Reading:
	Garnet.
	Gillett, A., Hammond, A. &Martala, M. (2009) Inside
	Track to Successful Academic Writing. London: Pearson
	Education.
	Lynch, T. (2004) Study Listening: Understanding Lectures
	and Talks in English (2nd Edition). Cambridge: CUP
	McCarter, S. & Jakes, P. (2009) Uncovering EAP. Oxford: Macmillan.
	Oshima, A. & Hogue, A. (2006) Writing Academic
	English (4th Edition). London: Longman.
	Smith, R. H. C. (2014) English for Electrical Engineering
	in Higher Education. Reading: Garnet
	Wallace, M.J. (2004) Study Skills in English. Cambridge:
	CUP
References/Articles	
Course Description	The JP in Materials Science and Engineering at NPU will
	be taught in English. This module will develop the English
	language skills of students on the JP, extending them and
	ensuring that students are capable of meeting the demands
	of studying and being examined in English. The module
	will develop students' receptive skills of reading and
	listening, as well as the productive skills of spoken and
	written English, and will offer practice in formal and

	informal communication, using presentations, essays and
	English clubs. There will be an emphasis on scientific
	English.
Course Arrangement	
(Chapters/hours)	
Week 1	
1. Welcome Back (2.5 hrs)	Course overview and objectives.
	Overview of Portfolios / QM Plus / QMHub
2. Writing for Science Subjects;	Review: Writing in science subjects is characteristically
characteristics of scientific	conventional. This means that scientific writing follows
writing	strict rules with regard to a number of issues [Northedge,
	A: The Science Good Writing Guide]
3. What Makes Good Scientific	Analysing different text types / styles and features of
Academic Writing?	academic writing
4. TA Seminar	Weekly consolidation and practice
Week 2	
5. Different Genres of Academic	Cause and effect writing / descriptive writing / report
writing	writing – common features / differences & similarities
6. Introduction to Report	Report Writing as a Genre. Key differences between a
Writing	report and an essay. Reports vs essays [Gillett, Hammond,
	Martala: Inside Track Successful Academic Writing pp
	226/227]
7. Precision in materials science	Choosing the right words/level of detail/ambiguity
writing	[Alley, M: Scientific Writing]
8. TA Seminar	Weekly consolidation and practice
Week 3	
9. Scientific Argument and	Breakthrough in renewable energy. (Part focused on the
Evidence	proactive Chinese response) Class discussion: what is the
	best response to climate change? What more can be done?
10. Evaluating evidence	Using Evidence in Academic Writing: Avoiding
	Plagiarism.Recognising and forming an argument/purpose
	of an argument/distinguish between arguments,
	description, explanation, etc.
11. Supporting your points –	Separating fact from opinion. Evaluating arguments.
facts and opinions	Useful argumentative signposting language.
	Teamwork: Prep for group discussion in T/A
12. TA Seminar	Weekly consolidation and practice
Week 4	
13. Writing the report	Structure of reports/organisation of reports/IMRAD
	system [Gillett, Hammond, Martala: Inside Track

	Successful Academic Writing pp 226/227]
14. Referencing Literature	Literature presentation in Sciences and Engineering/ key
5	words/the process of the narrative/example texts/CARS
	model
15. Literature searching	Library search / devising a research strategy / critical
S	examination of evidence / top ten guide to searching the
	internet / databases, books, journal articles Reporting
	verbs/revisiting synthesis
16. TA Seminar	Weekly consolidation and practice
Week 5	1
17. Structuring the Literature	Overview of the structure and organisation of the literature
Section	review section
18. Methodology	Set functions of the methodology section/ investigating
<u> </u>	edit sentences/using instructions
19. Applied experimental	Describing processes with clarity. Focus on step by step
methodologies	methodological analysis.
20. TA Seminar	Weekly consolidation and practice
Week 6	
21. Gathering data and	Methods of data collection, constraints/reliability and
Describing data	validity/language for describing statistical data/ analysis of
	data [J. Bell: Doing your research project]
	Describing processes/classifying and categorising
	[Gillett, Hammond, Martala: Inside Track Successful
	Academic Writing pp 226/227]
22. Language for describing data	Focus on specifically applied descriptive language for data
and statistics	and statistics [Northedge, A: The Science Good Writing
	Guide]
23. Designing and administering	Question type / question wording / appearance and layout /
questionnaires	drawing a sample / piloting the questionnaire
24. TA Seminar	Weekly consolidation and practice
Week 7	
25: Planning and conducting	Ethical considerations / question wording / countering bias
	/ checklist for planning and conducting interviews J. Bell
	- Doing your research project
26: Describing Results	Discourse analysis of students' examples – Focus on
	descriptive writing [McCarthy' O'Dell: Academic Vocab
	in Use]
27. The Discussion Section	Aspects of the Discussion/Explanation of data/Writing a
	Discussion section/Analysing a Discussion section/
	Interpreting in a Discussion section [J. Bell: Doing your

	research project]
28. TA Seminar	Weekly consolidation and practice
Week 8	-
29. Discussion (2)	Discourse analysis of students' examples
30. Interpreting evidence and	List questions / verbal questions / scales / checklist J.
reporting findings	Bell - Doing your research project
31. Introduction and Conclusion	Introduction order/Introduction overview/Scan an
	Introduction/Studying a Conclusion/Scanning a
	Conclusion section/Experiment hypothesis
32. TA Seminar	Weekly consolidation and practice
Week 9	
33. Introduction and Conclusion	Discourse analysis of students' examples
34. Pro seminar (presentations)	Presentation of groups proposed study including info on
	research objective, sample, thesis and methodology
35. Report Referencing	Academic language and accuracy in referencing
	[McCarthy' O'Dell: Academic Vocab in Use]
36. TA Seminar	Weekly consolidation and practice
Week 10	
37. Packaging and Editing	Abstracts – Swales & Feak 1994/Title page/What is a
	supervisor/Supervisor's and Student's roles/Scanning for
	editing purposes
38. Proofreading for accuracy	Checking for common errors, economy of expression
39. Presentations of findings	Presentations of findings
40. TA Seminar	Consolidation and practice
41. Presentations of findings	Presentations of findings
42. TA Seminar	Weekly consolidation and practice
Week 11	
43. Assessment	Written assessment
44. Assessment	Written assessment
45. TA Seminar	Consolidation and practice
46. Review	Review of key elements from the course
47. TA Seminar	Weekly consolidation and practice
Week 12	
48. Review & Feedback	Review of key elements from the course & Feedback
49: Review and consolidation	Review of semester, feedback and tutorials
50: Review and consolidation	Review of semester, feedback and tutorials
51. TA Seminar	Weekly consolidation and practice
52. Final Lecture (2 hrs)	Overview of Year 1 (Eng 2) projection to next year
Experimental & Practical	N/A
Section	
Hours	Contents

Learning Outcomes	
	English language ability at a level to lead to competence in meeting the requirements of the joint degree programme:
	QMUL BEng in Materials Science and Engineering and
	NPU BEng degree.
	Specific focus on scientific lexis in order to enhance
	academic performance in the joint degree programme.
	Read critically and show ability to evaluate sources and to
	formulate ideas in writing
	Understand and explain technical characteristics and
	complex ideas.
	Participate in, and to an intermediate level, lead academic
	discussions based on readings.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	Written assignment (1500 words) 60%
	Portfolio (750 words) 25%
	Seminar skills and presentation (1 hour) 25%
Practical experiments	N/A
Examination (written)	

Module Title	Advanced Mathematics 1
Summary Information	
Module Code	NXC3000
Class Hours/Credit(CN/UK)	88 Hours/5.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	Lecture + Practical Class/Discussion + Quiz
Course Type	Technical
Textbooks and References	1) Thomas' Calculus (10th edition), Ross L. Finney,
Textbooks	Maurice D. Weir and Frank R. Giordano, Higher
	Education Press, 2004.07.
	2) Single Variable Calculus (7th Edition), J. Stewart,
	Brooks Cole Cengage Learning, 2012.
	3) Multivariable Calculus (7th Edition), J. Stewart,
	Brooks Cole Cengage Learning, 2012.
References/Articles	
Course Description	Calculus gives the students of science and engineering all
	the basics knowledge they need for calculation. At the
	end, they have a strong training with the analytic calculus
	methods, what is essential to all other science courses
	and further education they are expected. In the exercises
	class, they can develop their ability to work in a team; it
	is also a way for them to go from the passive way of the
	lecture to an active way and at the same to assimilate the
	methods exposed; teacher is here to help them bypass the
	difficult points of executing by themselves.
Course Arrangement	
(Chapters/hours)	
Preliminaries: 2 hours	P1 Lines
	P2 Functions and Graphs
	P3 Exponential Functions
	P4 Inverse Functions and Logarithms
	P5 Trigonometric Functions and their Inverses
Chapter 1: Limits and Continuity	1.1 Rates of Change and Limits
10 hours	1.2 Finding Limits and One-Sided Limits
	1.3 Limits Involving Infinity
	1.4 Continuity
	1.5 Tangent Lines
Chapter 2: Derivatives	2.1 The Derivative as a Function
12 hours	2.2 The Derivative as a Rate of Change

	2.2 Devisedines of Devidence One did to
	2.3 Derivatives of Products, Quotients, and
	Negative Powers
	2.4 Derivatives of Trigonometric Functions
	2.5 The Chain Rule and Parametric Equations
	2.6 Implicit Differentiation
	2.7 Related Rates
Chapter 3: Applications of the	3.1 Extreme Values of Functions
Derivatives	3.2 The Mean Value Theorem and Differential
10 hours	Equations
	3.3 The Shape of a Graph
	3.4 Graphical Solutions of Autonomous
	Differential Equations
	3.5 Modelling and Optimization
	3.6 Linearization and Differentials
	3.7 Newton's Method
Chapter 4: Integration	4.1 Indefinite Integrals, Differential Equations,
14 hours	and Modelling
	4.2 Integral Rules; Integration by Substitution
	4.3 Estimating with Finite Sums
	4.4 Riemann Sums and Definite Integrals
	4.5 The Mean Value and Definite Integrals
	4.6 Substitution in Definite Integrals
	4.7 Numerical Integration
Chapter 5: Applications of	5.1 Volumes by Slicing and Rotation About an
Integrals	Axis
10 hours	5.2 Modelling Volume Using Cylindrical Shells
To flours	5.3 Lengths of Plane Curves
	5.4 Springs, Pumping, and Lifting 5.5 Fluid Forces
	5.6 Moments and Centres of Mass
	5.0 Moments and Centres of Mass
Evanimental & Description	NI/A
Experimental & Practical	N/A
Section	
Hours	
Learning Outcomes	
	Students should master the concepts and graphs of
	functions mentioned in Chapter P, be familiar
	with the definition and calculation methods of
	limit, master the techniques to calculate derivative
	for different kinds of functions and know the
	applications of derivatives. Secondly, students

Other Information	should not only know how to evaluate integrals of the single variable functions, but also know how to calculate the volumes of solids, the lengths of curves and other things which can be calculated with integrals. This module leads on to Advanced Mathematics 2.
Assessment Profile	
Grading Policy	100 grades, every semester
Coursework	Daily quizzes, worksheets, homework, etc. 30%
Practical experiments	None
Examination (written)	Middle Exam 30%, Comprehensive Final Exam 40%

Module Title	Advanced Mathematics 2
Summary Information	
Module Code	NXC3004
Class Hours/Credit(CN/UK)	88 Hours/5.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Spring
Teaching Profile	Lecture + Practical Class/Discussion + Quiz
Course Type	Technical
Textbooks and References	1) Thomas's Calculus (10th edition), Ross L. Finney,
Textbooks	Maurice D. Weir and Frank R. Giordano, Higher
	Education Press, 2004.07.
	2) Single Variable Calculus (7th Edition), J. Stewart,
	Brooks Cole Cengage Learning, 2012.
	3) Multivariable Calculus (7th Edition), J. Stewart,
	Brooks Cole Cengage Learning, 2012.
References/Articles	
Course Description	Calculus gives the students of science and engineering all
	the basics knowledge they need for calculation. At the
	end, they have a strong training with the analytic calculus
	methods, what is essential to all other science courses
	and further education they are expected. In the exercises
	class, they can develop their ability to work in a team; it
	is also a way for them to go from the passive way of the
	lecture to an active way and at the same to assimilate the
	methods exposed; teacher is here to help them bypass the
	difficult points of executing by themselves.
Course Arrangement	
(Chapters/hours)	7.1 Pagia Integration Formulas
Chapter 7: Integration	7.1 Basic Integration Formulas
Techniques, L'Hopital's Rule,	7.2 Integration by Parts7.3 Partial Fractions
and Improper Integrals 12 hours	7.4 Trigonometric Substitutions
12 nouis	
	7.5 Integral Tables, Computer Algebra Systems, and Monte Carlo Integration
	7.6 L'Hopital's Rule
	7.7 Improper Integrals
Chapter 8: Infinite Series	8.1 Limits of Sequences of Numbers
18 hours	8.2 Subsequences, Bounded Sequences, and
10 Hours	Picard's Method
	8.3 Infinite Series
	0.5 millio series

	8.4 Series of Nonnegative Terms
	_
	8.5 Alternating Series, Absolute and
	Conditional Convergence 8.6 Power Series
	8.7 Taylor and Maclaurin Series
	8.8 Applications of Power Series
	8.9 Fourier Series
	8.10 Fourier Cosine and Sine Series
Chapter 9: Vectors in the	9.1 Vectors in the Plane
Plane and Polar Functions	9.2 Dot Products
10 hours	9.3 Vector-Valued Functions
	9.4 Modelling Projectile Motion
	9.5 Polar Coordinates and Graphs
	9.6 Calculus of Polar Curves
Chapter 10: Vectors and	10.1 Cartesian (Rectangular) Coordinates and
Motion in Space	Vectors in Space
12 hours	10.2 Dot and Cross Products
	10.3 Lines and Planes in Space
	10.4 Cylinders and Quadric Surfaces
	10.5 Vector-Valued Functions and Space
	Curves
	10.6 Arc Length and the Unit Tangent Vector T
	10.7 The TNB Frame; Tangential and Normal
	Components of Acceleration
	10.8 Planetary Motion and Satellites
Chapter 11: Multivariable	11.1 Functions of Several Variables
Functions and Their	11.2 Limits and Continuity in Higher
Derivatives	Dimensions
20 hours	11.3 Partial Derivatives
	11.4 The Chain Rule
	11.5 Directional Derivatives, Gradient Vectors,
	and Tangent Planes
	11.6 Linearization and Differentials
	11.7 Extreme Values and Saddle Points
	11.8 Lagrange Multipliers
	11.9 Partial Derivatives with Constrained
	Variables
	11.10 Taylor's Formula for Two Variables
Chapter 12: Multiple	12.1 Double Integrals
Integrals	12.1 Double Integrals 12.2 Areas, Moments and Centres of Mass
18 hours	12.3 Double Integrals in Polar Form
10 110415	12.5 Double micgrais in Fulai Fulli

Chapter 13: Integration in Vector Fields 18 hours	12.4 Triple Integrals in Rectangular Coordinates 12.5 Masses and Moments in Three Dimensions 12.6 Triple Integrals in Cylindrical and Spherical Coordinates 12.7 Substitutions in Multiple Integrals 13.1 Line Integrals 13.2 Vector Fields, Work, Circulation, and Flux 13.3 Path Independence, Potential Functions, and Conservative Fields 13.4 Green's Theorem in the Plane\ 13.5 Surface Area and Surface Integrals 13.6 Parametrized Surface 13.7 Stokes' Theorem 13.8 Divergence Theorem and a Unified Theory
Experimental & Practical Section	N/A
Hours	
Hours	
Learning Outcomes	
Other Information	Having finished the second part, students should master the transcendental functions and how to solve the basic differential equations, and more techniques for integration and limits in chapter 7. They should not only know how to determine the series is absolutely or conditionally convergent, or divergent, but also master the series of functions, such as power series, Taylor series, and Fourier series. Chapter 9 to 10 is about the vectors in Plane and Space; students should master the definitions and operations of vectors and functions in space, and know how to express curves, planes, surfaces in different coordinates. This module follows Advanced Mathematics 1.
Assessment Profile	
Grading Policy	100 grades, every semester
Coursework	Daily quizzes, worksheets, homework, etc. 30%
Practical experiments	None

Examination (written)	Middle Exam 30%, Comprehensive Final Exam 40%
-----------------------	---

Module Title	Linear Algebra
Summary Information	
Module Code	NXC3002
Class Hours/Credit(CN/UK)	48 Hours/3 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	Lecture + Practical Class/Discussion + Quizzes
Course Type	Technical
Textbooks and References	Steven J. Leon, Linear Algebra with Applications
Textbooks	(Eighth Edition), China Machine Press, 2012
References/Articles	(1) Elementary Linear Algebra, 7th Edition, Larson.
	 (2) Introduction to Linear Algebra, 3rd edition, Gilbert Strang, Wellesley-Cambridge Press, 2003. (3) Student Study Guide to Linear Algebra with Applications, ISBN 0-13-600930-1. (4) A special Web site to accompany the 8th edition: www.pearsonhighered.com/leon (5) The collection of software tools (M-files) downloaded from the ATLAST Web site: www.umassd.edu/specialprograms/atlast
Course Description	Linear algebra is an important component of
	undergraduate mathematics. The course content covers fundamental concepts of linear algebra such as solving linear system of equations, vector/matrix algebraic theory, determinant and its properties, vector space, linear transformations, orthogonality, eigenvalues, eigenvectors and applications to linear differential equations. Furthermore, elementary linear algebra is a valuable introduction to mathematical abstraction and logical reasoning because the theoretical development is self-contained, consistent, and so accessible to most students.
Course Arrangement	
(Chapters/hours)	
Chapter 1: Matrices and Systems	1.1 Systems of linear Equations
of Equations	1.2 Row Echelon Form
8 hours	1.3 Matrix Arithmetic

	1.4 Matrix Algebra
	1.5 Elementary Matrices
	1.6 Partitioned Matrices
Chapter 2: Determinants	2.1 The Determinant of a Matrix
8 hours	
8 nours	2.2 Properties of Determinants
	2.3 Additional Topics and Applications
Chapter 3: Vector Spaces	3.1 Definition and Examples
11 hours	3.2 Subspaces
	3.3 Linear Independence
	3.4 Basis and Dimension
	3.5 Change of Basis
	3.6 Row Space and Column Space
Chapter 4: Linear	4.1 Definition and Examples
Transformations	4.2 Matrix Representations of Linear
4 hours	Transformations
	4.3 Similarity
Chapter 5: Orthogonality	5.1 The Scalar Product in R ⁿ
10 hours	5.2 Orthogonal Subspaces
	5.3 Least Squares Problems
	5.4 Inner Product Spaces
	5.5 Orthonormal Sets
	5.6 The Gram-Schmidt Orthogonalization Process
Chapter 6: Eigenvalues	6.1 Eigenvalues and eigenvectors
5 hours	6.2 Diagonalisation
Review – 2 hours	
Experimental & Practical	N/A
Section	
Hours	
Learning Outcomes	
	By this course, students will have a thorough
	understanding, not only of matrix theory and
	systems of linear equations, vector space, and
	eigenvalue etc., but also of practical
	computational methods that will help them in
	other academic subject such as mathematics and
	engineering.
Other Information	
Assessment Profile	

Grading Policy	100 grades
Coursework	Assignments 20%, Discussion/quizzes 20%
Practical experiments	None
Examination (written)	Mid-term Exam 15%, Final Exam 35%

Module Title	Mathematical Modelling and Computing
Summary Information	
Module Code	NXC3005
Class Hours/Credit(CN/UK)	64 Hours/4 credits/15 credits
Responsible Institution	NPU
Opening Semester	Spring
Teaching Profile	Lecture + Practical Class/Discussion + Quizzes
Course Type	Technical
Textbooks and References	Jeffery J. Leader, Numerical Analysis and
Textbooks	Scientific Computation, Pearson, 2005
References/Articles	(1) Richard L. Burden, J.DouglasFaires.
	Numerical Analysis (9th Edition), Thomson
	(2) Laurene v. Fausett, Applied Numerical
	Analysis Using MATLAB, 2/E, Pearson, 2008
Course Description	This course is intended as a first course in
	Numerical Analysis taken by students majoring in
	mathematics, engineering, computer science, and
	the sciences. The teaching content covers
	fundamental methods for root-finding problems,
	direct methods and iterative methods for solving
	systems of linear equations and interpolation built with regard to a set of given data. The teaching
	model will emphasize the mathematical ideas
	behind the methods and the idea of mixing
	methods for robustness. The use of MATLAB is
	incorporated throughout the teaching period. The
	class helps them to realize that a method has
	limitations in its application which is at the origin
	of the variety of derivative ones. The purpose of
	this course is also to help the students to develop
	their logic, their ability to order the work in a
	systematic way.
Course Arrangement	
(Chapters/hours)	
Introduction – 1 hour	
Chapter 1: Nonlinear Equations	1.1 Bisection and Inverse Linear Interpolation
9 hours lectures +	1.2 Newton's Method
8 hours practical lectures	1.3 The Fixed Point Theorem
	1.4 Quadratic Convergence of Newton's Method
	1.5 Variants of Newton's Method
	1.6 Brent's Method

	17 FCC + CF' '- P ' ' A '-1 + '
	1.7 Effects of Finite Precision Arithmetic
	1.8 Newton's Method for Systems
	1.9 Broyden's Method
Chapter 2: Linear Systems	2.1 Gaussian Elimination with Partial Pivoting
8 hours lectures +	2.2 The LU Decomposition
6 hours practical lectures	2.3 The LU Decomposition with Pivoting
	2.4 The Cholesky Decomposition
	2.5 Condition Numbers
	2.6 The QR Decomposition
	2.7 Householder Triangularization and the QR
	Decomposition
	2.8 Gram-Schmidt Orthogonalization and the QR
	Decomposition
	2.9 The Singular Value Decomposition
Chapter 3: Iterative Methods	3.1 Jacobi and Gauss-Seidel Iteration
6 hours lectures +	3.2 Sparsity
2 hours practical lectures	3.3 Iterative Refinement
-	3.4 Preconditioning
	3.5 Krylov Space Methods
	3.6 Numerical Eigenproblems
Chapter 4: Polynomial	4.1 Lagrange Interpolation Polynomial
Interpolation	4.2 Piecewise Linear Interpolation
4 hours lectures +	4.3 Cubic Splines
2 hours practical lectures	4.4 Computation of the Cubic Spline
	Coefficients
Chapter 5: Numerical	5.1 Closed Newton-Cotes Formulas
Integration	5.2 Open Newton-Cotes Formulas and
8 hours lectures +	Undetermined Coefficients
4 hours practical lectures	5.3 Gaussian Quadrature
	5.4 Gauss-Chebyshev Quadrature
	5.5 Radau and Lobatto Quadrature
	5.6 Adaptivity and Automatic Integration
	5.7 Romberg Integration
Chapter 6: Differential	6.1 Numerical Differentiation
Equations	6.2 Euler's Method
2 hours lectures +	6.3 Improved Euler's Method
2 hours practical lectures	6.4 Analysis of Explicit One-Step Methods
_ nouse practical location	6.5 Taylor and Runge-Kutta Methods
	6.6 Adaptivity and Stiffness
	6.7 Multi-Step Methods
Chapter 7: Nonlinear	7.1 One-Dimension searches
Chapter /. Nonlinear	7.1 One-Dimension scarciles

Optimisation	7.2 The Method of Steepest Descent
	7.3 Newton Methods for Nonlinear
	Optimization
	7.4 Multiple Random Start Methods
	7.5 Direct Search Methods
	7.6 TheNelder-Mead Method
	7.7 Conjugate Direction Methods
Chapter 8: Approximation	8.1 Linear and Nonlinear Least Squares
Methods	8.2 The Best Approximation Problem
	8.3 Best Uniform Approximation
	8.4 Applications of the Chebyshev Polynomials
Review – 2 hours	
Experimental & Practical	N/A
Section	
Hours	
Learning Outcomes	
	After successfully completing the course, students will be able to not only master basic computing methods and their mathematical theorems, but also enjoy study, develop their logic and improve their practical capability in Matlab. Furthermore, they can choose an appropriate method to address an engineering problem on a computer.
Other Information	
Assessment Profile	
Grading Policy	100 grades
Coursework	Lecture attendance 10%
Practical experiments	Computing work 20%
Examination (written)	Mid-term Exam 30%, Final Exam 40%
1	1

Module Title	General Physics
Summary Information	
Module Code	NXC3001
Class Hours/Credit(CN/UK)	82 hours/5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	50 hours lectures, 32 hours practicals
Course Type	Technical
Textbooks and References	Physics for scientists and engineers with modern
Textbooks	physics, Douglas C. Giancoli, Higher Education
	Press. 2004.
References/Articles	[1] Hugh D. Yound and Roger A. Freedman
	(2011). Sears and Zemansky's University
	Physics with Modern Physics
	[2] R. P. Feynman (2013). The Feynman Lectures
	on Physics
Course Description	General Physics is an important fundamental
	theory course for students in the major of BEng
	Materials Science and Engineering & BEng
	Polymer Materials Science and Engineering. This
	course not only helps students to obtain the
	necessary physical fundamental knowledge, but
	also generates important impacts on further study
	of new materials science theory, knowledge and
	technologies in the future. On the other hand,
	through the study of this course, the students can
	obtain the methods to think and solve problems in
	the field of materials science and engineering.
Course Arrangement	
(Chapters/hours)	
Chapter 1/1 hour	1.2 Dimensions
	1.3 Vectors and scalars
	1.4 Matrix Algebra
Chapter 2/2 hours	2.1 Position and Displacement
	2.2 Velocity
	2.3 Acceleration
	2.4 2D and 3D motion
	2.5 Relative Motion
Chapter 3/2 hours	3.1 Newton's Laws
	3.2 Some Particular Forces
	3.3 Applying Newton's Laws

Chapter 4/2 hours 4.1 Work and Power 4.2 Kinetic Energy & Work-Energy Principle 4.3 Conservative and Nonconservative Forces 4.4 Potential Energy 4.5 Conservation of Energy 5.1 Linear Impulse and Momentum 5.2 Impulse-Momentum Theorem and Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass Chapter 6/3 hours 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines 11.4 Entropy and the Second Law of		
4.3 Conservative and Nonconservative Forces 4.4 Potential Energy 4.5 Conservation of Energy 5.1 Linear Impulse and Momentum 5.2 Impulse-Momentum Theorem and Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 4/2 hours	4.1 Work and Power
4.4 Potential Energy 4.5 Conservation of Energy 5.1 Linear Impulse and Momentum 5.2 Impulse-Momentum Theorem and Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		4.2 Kinetic Energy & Work-Energy Principle
4.5 Conservation of Energy Chapter 5/3 hours 5.1 Linear Impulse and Momentum 5.2 Impulse-Momentum Theorem and Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass Chapter 6/3 hours 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		4.3 Conservative and Nonconservative Forces
Chapter 5/3 hours 5.1 Linear Impulse and Momentum 5.2 Impulse-Momentum Theorem and Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass Chapter 6/3 hours 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		4.4 Potential Energy
Chapter 5/3 hours 5.1 Linear Impulse and Momentum 5.2 Impulse-Momentum Theorem and Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass Chapter 6/3 hours 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		4.5 Conservation of Energy
5.2 Impulse-Momentum Theorem and Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 5/3 hours	5.1 Linear Impulse and Momentum
Conservation of Momentum 5.3 Newton's 2nd Law for the Motion of the Centre of Mass 5.4 System of Variable Mass 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		5.2 Impulse-Momentum Theorem and
Centre of Mass 5.4 System of Variable Mass Chapter 6/3 hours 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		_
S.4 System of Variable Mass		5.3 Newton's 2nd Law for the Motion of the
Chapter 6/3 hours 6.1 Concepts of Simple Harmonic Motion 6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		Centre of Mass
6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		5.4 System of Variable Mass
6.2 Expression Methods of Single Harmonic Motion 6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 6/3 hours	
6.3 Energy in Single Harmonic Motion 6.4 Pendulums 6.5 Superposition of Oscillations 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		1 -
6.4 Pendulums 6.5 Superposition of Oscillations 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		
6.4 Pendulums 6.5 Superposition of Oscillations 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		6.3 Energy in Single Harmonic Motion
Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		
Chapter 7/3 hours 7.1 Simple Harmonic Waves 7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		6.5 Superposition of Oscillations
7.2 Wave Equation 7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 7/3 hours	
7.3 Energy and Power of Waves 7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		1
7.4 Interference of Waves 7.5 Standing Waves 7.6 The Doppler Effect Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		_
7.6 The Doppler Effect 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		
7.6 The Doppler Effect 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		7.5 Standing Waves
Chapter 8/2 hours 8.1 Coherent Light 8.2 Double-slit Interference 8.3 Thin-film Interference Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		7.6 The Doppler Effect
Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 8/2 hours	
Chapter 9/2 hours 9.1 Diffraction of Light 9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		8.2 Double-slit Interference
9.2 Diffraction Gratings 9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		8.3 Thin-film Interference
9.3 Polarized Light 9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 9/2 hours	9.1 Diffraction of Light
9.4 X-Ray Diffraction Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		9.2 Diffraction Gratings
Chapter 10/2 hours 10.1 Temperature & Thermometer 10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		9.3 Polarized Light
10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		9.4 X-Ray Diffraction
10.2 The Ideal Gas Law 10.3 Pressure and Temperature of Ideal Gas 10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 10/2 hours	
10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		<u> </u>
10.4 The Maxwell's Distribution Laws 10.5 Mean Free Path Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		10.3 Pressure and Temperature of Ideal Gas
Chapter 11/2 hours 11.1 The First Law of Thermodynamics 11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		_
11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		10.5 Mean Free Path
11.2 Some Special Cases of the First Law of Thermodynamics 11.3 The Efficiencies of Real Engines		
Thermodynamics 11.3 The Efficiencies of Real Engines	Chapter 11/2 hours	11.1 The First Law of Thermodynamics
11.3 The Efficiencies of Real Engines		11.2 Some Special Cases of the First Law of
		Thermodynamics
11.4 Entropy and the Second Law of		11.3 The Efficiencies of Real Engines
		11.4 Entropy and the Second Law of

	Thermodynamics
Chapter 12/5 hours	12.1 Electric Field and Its Principle of
	Superposition
	12.2 Gaussian's Law and Its Applications
	12.3 Electric Potential and Its Principle of
	Superposition
	12.4 Loop-Law and Its Applications
Chapter 13/4 hours	13.1 Conductor
	13.2 Capacitor and Capacitance
	13.3 Dielectrics
	13.4 Energy Stored in an Electric Field
Chapter 14/1 hour	14.1 Electric Current
	14.2 Electric Current Density
	14.3 Microscopic View of Ohm's Law
Chapter 15/5 hours	15.1 Magnetic Flux and Gauss's Law
	15.2 The Magnetic Force on a Charge
	15.3 Magnetic Force on a Current-Carrying Wire
	15.4 Magnetic Field Due to Current
	15.5 Ampere's Law
	15.6 Magnetic Materials
Chapter 16/5 hours	16.1 The Law of Electro-Magnetic Induction
	16.2 Motional & Induced EMF
	16.3 Self and Mutual Induction
	16.4 Energy Stored in a Magnetic Field
	16.5 Displacement Current & Ampere-Max Law
	16.6 Maxwell's Equation
Chapter 17/2 hours	17.1 The Postulates of Relativity
_	17.2 The Relativity of Simultaneity, Time and
	Length
	17.3 Relativistic Momentum and Mass
	17.4 Energy and Mass
Chapter 18/3 hours	18.1 Planck's Quantum Hypothesis
-	18.2 The Photoelectric Effect & Compton Effect
	18.3 Wave Nature of Matter & The Hydrogen
	Atom
	18.4 Schrodinger's Equation
Experimental & Practical	This experimental class consists of two-hour for
Section	introductory including error and uncertainty, and
	and and the first and an orthanity, and

	30-hours for ten experiments.
Hours	Contents
2	Error and Uncertainty
	Preliminary Physics Experiments
3	1. The Speed of Sound
3	2. Young's Modulus of Steel Wire
3	3. Specific Heat of Aluminum via Mixing Method
3	4.Moment Inertia via Trilinear Torsion Pendulum
3	5. Magnetic Flux Measurement via Haul Effect
3	6. Measurement of High Resistance via RC Discharging Method
	Multidisciplinary and Modern Experiments
3	7. Measurement of Micro-deformation via Bridge Circuit
3	8.Michelson Interferometer
3	9.Design Thermometer Based on Thermistor
3	10. Holography
Learning Outcomes	
	The students should not only to obtain the necessary physical fundamentals in lecturers, but also generate important impacts on the study of new theory, new knowledge, and new technologies in the future study and work. In physics experiments, students will get basic training in the theory, method and skill of physics experiment, and preliminary understanding of primary process and basic approach of scientific experiment. It is fundamentally important to develop and improve students' quality and ability to carry out scientific research independently.
Other Information Assessment Profile	The student should have some familiarity with the basics of Higher Mathematics. Lectures through PowerPoint Presentation (PPT) and blackboard writing.

Grading Policy	100 grades
Coursework	20%
Practical experiments	30%
Examination (written)	50%

Module Title	Engineering Design Methods
Summary Information	
Module Code	NXC4008
Class Hours/Credit(CN/UK)	56 Hours/3.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	40 hours Lectures / 16 hours design practice
Course Type	Technical
Textbooks and References	Bella Martin, Bruce M. Hanington (2012) Universal
Textbooks	methods of design: 100 ways to research complex
	problems, develop innovative ideas, and design effective
	solutions, Rockport Publishers, ISBN
	9781592537563
References/Articles	
Course Description	Short description: This module will introduce the ideas of
	design control and the design cycle. It will examine how
	3D computer aided engineering can be used to create
	detailed design drawings, create simple assemblies,
	manufacture prototypes, real parts and also how
	analytical models such as finite element analysis
	geometries can be used to evaluate designs. A wide range
	of different processing techniques such as moulding,
	forming, cutting, welding, turning and milling will be
	examined. Various different strategies such as failure
	mode and effect analysis (FMEA) that can be used to
	evaluate the design risk, especially in areas with
	extensive legislation in place, to determine 'safe' design.
Course Arrangement	
(Chapters/hours)	
Chapter 1:	Measurement of length, volume, mass. The role of
	inspection and statistical process control techniques in
	ensuring a robust design and manufacturing process.
Chapter 2:	Ensuring robust and safe design practice is followed
	using techniques like Failure mode and effect analysis
	(FMEA) in design. Understanding the role of legislation
	to ensure safety standards in the design of devices.
Chapter 3:	Using engineering analysis tools such as stress analysis
	to evaluate designs
Chapter 4:	3D CAE to generate detailed 2D drawings

Chapter 5:	3D CAE to generate simple assemblies of multiple components to evaluate
Chapter 6:	3D CAE to generate simple finite element models
Chapter 7:	3D CAE to generate simple tool paths for machining operations
Chapter 8:	Manufacturing of prototypes and products, using additive manufacturing techniques such as rapid prototyping, vacuum forming, compression moulding, injection moulding, laser cutting and simple casting
Chapter 9:	The use of a variety of machining operations such as turning, milling and other fabrication techniques
Chapter 10:	Design for assemble and fabrication (?)
Chapter 11:	The role of kinematics, ergonomics and anthropometrics in design
Experimental & Practical Section	Practical examples that include:
Hours	Using the CAE software in a design setting
	Use rapid prototype to test design
Learning Outcomes	
Other Information	
Assessment Profile	
Grading Policy	100 grades
Coursework	
Practical experiments	
Examination (written)	

Module Title	Chemistry for Materials
Summary Information	
Module Code	QXU5002
Class Hours/Credit(CN/UK)	64 hours/4 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours lectures, 8 hours practicals, 16 hours tutorials
Course Type	Technical
Textbooks and References	JE House (2007) Principles of Chemical Kinetics,
Textbooks	2 edition, Academic Press /
	ISBN:978-0123567871
	P Atkins (2009) Physical Chemistry, 9th Edition,
	Oxford University Press / ISBN: 9781429218122
References/Articles	
Course Description	This module examines the theory of X-ray
	diffraction and analytical electron microscopy.
	Applications of X-ray techniques, scanning and
	transmission electron microscopy in materials
	science and engineering. Other techniques that
	cans be used to identify materials are introduced.
Course Arrangement	
(Chapters/hours)	
	Waves and particles
	Electro-magnetic radiation
	Electronic structure of atoms, concept of binding
	energy
	The wave/particle duality
	Interaction of x-rays, electrons and atoms,
	interaction of x-rays and electrons with materials
	Electron Microscopy Electron beam generation,
	and control
	Operation and function of electron microscopes
	Image formation and interpretation
	Sample preparation for SEM
	Secondary electron, backscattered electron and
	x-ray dot map image modes
	Sample preparation for TEM
	Bright field, dark field mode for image
	enhancement

	Dislocation contrast
	Use of electron interactions to produce
	crystallographic data from TEM
	x-ray and Electron Diffraction
	x-ray generation and absorption of x-ray beams
	by materials
	Derivation of Braggs Law relating wavelength
	and angle
	Diffractometry using q/2q geometry
	Phase identification and quantification,
	<u>-</u>
	calculation of lattice parameters and unit cell volumes
	Analysis of crystal orientation, residual stress,
	crystallite size in polymers
	Analytical techniques
	x-ray spectroscopy and analysis, electron beam
	microanalysis, auger electron spectroscopy and
	imaging, x-ray photoelectron spectroscopy
	Data capture, display and interpretation
Experimental & Practical	2 2 2
Section	
Hours	
Learning Outcomes	
	Students will be able to express their
	understanding in their responses to questions not
	notified in advance to the satisfaction of an
	internal or external examiner appointed by the
	board of examiners.
	Students will be able to use the energy level
	model of atomic structure to describe the
	interaction of electrons and X-rays with matter
	and the information conveyed by the interaction
	and be how x-ray and electron beam instruments
	are used to obtain structural information about
	materials. They will be able to interpret simple
	examples of micrographs, analytical
	anddiffraction data obtained from such
I .	i anaaninaciiyii aata yytailica HVIII sacii
	instruments.

Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	Physical Properties of Polymers
Summary Information	
Module Code	QXU5032
Class Hours/Credit(CN/UK)	64 hours/4 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours lectures, 8 hours practicals, 16 hours tutorials
Course Type	Technical
Textbooks and References	R J Young and P A Lovell (1991). Introduction to
Textbooks	Polymers. 2nd Edition. Chapman and Hall,
	London. / ISBN:0412306409
	Polymer chemistry: an introduction
	Date: 1999, Edition: 3rd ed, ISBN: 0195124448
References/Articles	
Course Description	This course examines the physical and mechanical
	properties of polymers in relation to their
	molecular structure. This focuses on the structure
	of macromolecules, transitions in polymers,
	rubber elasticity, viscoelasticity, mechanical
	properties of polymers, processing of polymers,
	polymer blends and filled polymers.
Course Arrangement	
(Chapters/hours)	
	Structure of macromolecules: structure of
	polymers.
	Classification of polymers: bulk, engineering and
	speciality polymers, structure of the main chain,
	degree of polymerisation and chain length, side
	groups, chain interactions, network formation.
	Calculation of number average molar mass,
	weight average molar mass and z-average molar
	mass, influence of molar mass distribution on
	properties.
	The influence of polymer structure on chain
	regularity and chain conformation.
	The influence of polymer structure on chain
	stiffness, random coil conformation, end-to-end
	distance and natural draw ratio.
	Transitions in polymers: glass transition

temperature, melt temperature, secondary
transitions, crystallisation.
Influence of temperature on volume and modulus
(logE-T plot) for semi-crystalline and amorphous
polymers.
Influence of chain stiffness, side groups and chain
interactions on Tg.
Miscible blends, immiscible blends and phase
behaviour, copolymers, fillers and their effect on
properties. Influence of polymers structure on
melting temperature, influence of chain
orientation on Tm.
Influence of polymer structure on crystallisation,
optimal crystallisation temperature, influence of
crystallinity on stiffness and high temperature
properties of polymers.
Influence of entanglement and crosslink density
on rubber plateau modulus (entropy elasticity),
influence of molar mass and time-scale
(viscoelasticity) on rubbery plateau.
Liquid state, influence of molar mass on viscosity,
influence of molar mass and molar mass
distribution on melt flow behaviour and
processing.
Deformation behaviour of polymers: amorphous
and semi-crystalline polymers, viscoelasticity,
modulus, yielding, necking, draw and strain
hardening, influence of polymer structure (e.g.
secondary interactions, chain stiffness, molar
mass and molar mass between entanglements) on
stress-strain curve, effect of physical ageing on
stress-strain behaviour, influence of entanglement
network on maximum extensibility (maximum
draw-ratio).
Crazing of glassy polymers, toughening
mechanisms, multiple crazing, theory of
viscoelasticity, durability, stress relaxation and
creep behaviour.
Basics of polymer processing: injection moulding,
extrusion, blow moulding, film blowing, fibre

	spinning, thermoforming.
	An introduction to functional polymers such as conductive polymers and liquid crystals for applications such as displays, sensors, solar cells, etc.
Experimental & Practical	
Section	
Hours	
Learning Outcomes	
	Students will be able to classify, describe and discuss the effects of molecular structure (e.g. secondary interactions, chain stiffness, molar mass and molar mass between crosslinks or entanglements) and morphology (e.g. in blends or semi-crystalline materials) of polymers on their glass transition temperature, melting temperature, mechanical properties and processability. They will be able to select an appropriate processing method for a wide variety of polymeric end-products. They will be able to have a basic understanding of fundamental polymer physics concepts.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	Materials Science 1 – Structure and Properties
Summary Information	
Module Code	QXU4000
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours lectures, 16 hours tutorials
Course Type	Technical
Textbooks and References	M Nelkon, P Parker (1995). Advanced Level
Textbooks	Physics. 7th Edition. QC23 NEL /
	ISBN:043592303X
	W D Callister (1997). Materials Science and
	Engineering. 7 th Edition. TM100 CAL /
	ISBN:0471134597
References/Articles	N/A
Course Description	Introduction of Atomic structure and inter-atomic
	bonding; structure of crystalline solids;
	imperfections in solids; diffusion; mechanical
	properties of metals; phase diagrams; phase
	transformations in metals; organic materials;
	development of microstructure and alteration of
	mechanical properties.
Course Arrangement	
(Chapters/hours)	
1	Atomic structure and interatomic bonding
2	Structure of crystalline solids
3	Imperfections in solids
4	Diffusion
5	Mechanical properties of metals
6	Dislocations and strengthening mechanisms
7	Failure
8	Phase diagrams
9	Phase transformations in metals
10	Development of microstructure and alteration of
	mechanical properties
Experimental & Practical	N/A
Section	
Hours	

Learning Outcomes	
	Students will be encouraged to develop a sound
	understanding of the important topics in materials
	science. To importantly illustrate the relationships
	between microstructure and properties. They will be
	encouraged to think about how microstructures and
	properties can be manipulated to achieve desired
	properties. They will understand the structure of
	materials, phase equilibria and phase transformations;
	characterisation of composition and microstructure of
	materials; chemistry, thermodynamics and kinetics
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	Materials Science 2 – Processing and Applications
Summary Information	<u> </u>
Module Code	QXU4006
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Spring
Teaching Profile	40 hours lecturers, 16 hours tutorials
Course Type	Technical
Textbooks and References	W D Callister (2007). Materials Science and
Textbooks	Engineering An Introduction. 7th. Wiley. / ISBN:9780471736967
References/Articles	
Course Description	This course extends what was taught in MAT100/QXU4000 and now covers the properties, processing and applications of materials. In particular the processing and
	application of metals, polymers and ceramics including their electrical, thermal, magnetic and optical properties. Applications and processing of
	metal alloys; structure and properties of ceramics; applications and processing of ceramics; polymer structures; characteristics, applications, and processing of polymers.
Course Arrangement	
(Chapters/hours)	
	The course will follow chapters 11-15 and 18-21 in Materials Science and Engineering an Introduction by WD Callister.
	Applications and processing of metal alloys
	Structure and properties of ceramics
	applications and processing of ceramics
	polymer structures
	characteristics, applications, and processing of
	polymers
	electrical properties
	thermal properties
	magnetic properties
	optical properties

Experimental & Practical Section	N/A
Hours	
Learning Outcomes	
	Students will be able to relate crystallographic structure
	and microstructure to physical properties.
	Students will understand industrial processes for
	producing polymers, ceramics and metal alloy
	components.
	Students' understanding of the underlying physics will be
	sufficient to explain the structural and functional
	properties of materials.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	Molecules to Materials
Summary Information	
Module Code	QXU4001
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Spring
Teaching Profile	40 hours lectures, 16 hours tutorials
Course Type	Technical
Textbooks and References	Brown et al. Chemistry the central science,12th
Textbooks	int Ed, Pearson / ISBN: 9780321749833
	Barrett et al. Structure and Bonding: RSC(tutorial
	chemistry texts), 2001, Royal Society of
	Chemistry ISBN:978-0854046478
	Maskill. Mechanisms of Organic Reactions
	(Oxford Chemistry Primers), 1996, Oxford
	University Press, ISBN: 978-0198558224
	West. Basic Solid State Chemistry, 2nd Edition,
	1999, Wiley-Blackwell, ISBN: 978-0471987567
References/Articles	
Course Description	The role of chemistry in materials science. The
	module will begin with the description of
	chemical bonding in atomic systems. Students
	will be given an understanding of how atomic
	orbitals are derived and what they actually mean.
	This will be used as a basis to explain group and
	period behaviour in the periodic table. This will
	be developed further into molecular bond systems
	such as hybrid bonding (Sp3, Sp2 etc) as well as
	very basic descriptions of molecular orbital
	theory. Students will learn how to use these
	concepts to define molecular shape and
	behaviour. Students will also learn how these
	shapes and bond types are important in chemical
	reactions that form materials, for example
	polymer synthesis. This will be done by providing
	a discussion on basic organic chemistry reaction
	mechanisms. The module will continue to show
	how bonding changes in materials, band theory
	will be introduced and described using
	semiconductor materials as an example. Unusual

Course Arrangement	behaviours which are the result of quantum effects on bonding will also be described, for example quantum dots.
(Chapters/hours)	
(Chapters/hours)	
Experimental & Practical	N/A
Section	
Hours	
Learning Outcomes	
	The main aim of the module is to give students a good grounding in the important role of chemistry in materials synthesis and materials science. The module will focus on understanding the fundamental principles behind chemical bonding and chemical reactions and how these change from simple atoms through molecular systems to large scale materials. The module will be practically focused with multiple problem solving aspects related to the real world, for example: 1) Period and Group behavior of elements 2) Important reactions in polymer synthesis. 3) The behavior of semiconductor materials 4) Size effects in materials. 5) Structure and bonding as a way of controlling structure property relationships.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	Mechanical Modelling – Solid Mechanics
Summary Information	
Module Code	NXC4012
Class Hours/Credit(CN/UK)	56 Hours/3.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	40 hours Lectures / 6 hours tutorial example classes/10
	hours computer simulation of stress analysis
Course Type	Technical
Textbooks and References	R. C. Hibbeler, S. C. Fan (2004) Statics and mechanics
Textbooks	of materials, Prentice Hall, ISBN 0131290118
References/Articles	
Course Description	This course introduces principal modelling techniques in solid mechanics focusing on micromechanical aspects of materials science. Fundamental concepts (e.g. Newton's laws, force/movement, stress/strain, energy/work, statics/dynamics, friction/creep/fatigue etc.) will be studied to derive mechanical models for the description of the behaviour of materials. This module develops concepts of stresses and strains in components and how they may be designed to prevent failure. It considers plane stress and strain conditions, using matrix notation to describe these conditions and the failure criteria that may be applied to these systems. It also considers complex bending conditions in asymmetric and composite beams and the stability of struts. Corresponding applications for real-life design tasks are finally discussed to get insight into basic mechanics-based material selection criteria and examples drawn from applications in aerospace, mechanical and
	medical engineering.
Course Arrangement	
(Chapters/hours)	
Chapter 1:	Forces and moments, speed and acceleration.
Chapter2:	Free body diagrams, equilibrium and boundary conditions, constrained forces.
Chapter 3:	Newton's Laws, energy, work, friction, power, impulse

	etc.
Chapter 4	Symbols and sign convention. Principal stresses and strains. Maximum shear stress. Stress concentrations.
Chapter 5	Mechanical modelling of materials: Linear elasticity, non-linear elasticity, plasticity, material hardening
Chapter 6:	Failure criteria: yield criteria, Tresca, von Mises maximum stress (ultimate strength)
Chapter 7:	Bars, beams (bending, torsion
Chapter 8:	Shear force and bending moment diagrams.
Chapter 9:	Bending theory: normal and shear stresses on beam sections. Beam deflection. Beams of arbitrary cross-section subject to multiaxial bending, cross-moment of area, principal second moments of area, composite sections. Principal of superposition, the deflection of beam under bending load
Chapter 10:	Stability of struts: Stresses due to axial loads and bending, short struts, Euler cases, buckling lengths, influence of imperfections,
Experimental & Practical Section	
Hours	
Learning Outcomes	
Other Information	
Assessment Profile	
Grading Policy	100 grades
Coursework	

Practical experiments	
Examination (written)	

Module Title	Thermodynamics and Phase Transformations
Summary Information	
Module Code	NXC4022
Class Hours/Credit(CN/UK)	56 Hours/3.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Spring
Teaching Profile	40 hours Lectures / 16 hours tutorial example classes
Course Type	Technical
Textbooks and References	G Price (1998) Thermodynamics of Chemical Processes
Textbooks	(Oxford Chemistry Primer), Oxford University Press /
	ISBN:978-0198559634
References/Articles	
Course Description	This module formally introduces the fundamental principles of general non-equilibrium thermodynamics; it
	examines applications of single-constituent fluids, and
	provides background for all applications in engineering.
	Then the module examines the important phase
	transformations in materials from liquid to solid and solid
	to solid including: effects of surface energy, diffusion,
	solidification of pure metals and alloys, precipitation,
	liquid crystals, recrystallisation and grain growth,
	sintering processes.
Course Arrangement	
(Chapters/hours)	
Chapter 1	Introduction to General Thermodynamics. Historical
	perspective and utility of the pedagogical approach.
Chapter 2	Thermodynamic system, state, property, specific,
	extensive and intensive properties. Energy, adiabatic
	process, first law, work, adiabatic availability.
Chapter 3	Equilibria, second law, thermodynamic reservoir,
	available energy (exergy), entropy, temperature,
	pressure, work interaction and heat interaction.
Chapter 4	Energy-entropy graphical representations.
Chapter 5:	Nucleation in liquids and solids, methods of hardening,
	precipitation and particle growth, eutectic and eutectoid

	transformations, surface and interfacial energies
Chapter 6: Fluid Statics	Diffusion in metals and ceramics, Fick's laws, diffusion coefficients, diffusion into semi-infinite solids, surface hardening, semiconductor doping, uphill diffusion, spinodal decomposition, temperature dependence, free volume theories.
Chapter 7: Fluid dynamics	Driving force for sintering, vitrification, liquid phase sintering, solid state sintering, mass transport paths, grain growth, kinetics and effect on sintering, sintering of metals, ceramics and polymers, applications.
Experimental & Practical Section	
Hours	
Learning Outcomes	
Other Information	
Assessment Profile	
Grading Policy	100 grades
Coursework	
Practical experiments	
Examination (written)	

Module Title	Surfaces and Interfaces
Summary Information	
Module Code	QXU5010
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours lectures, 8 hours practicals, 16 hours tutorials
Course Type	Technical
Textbooks and References	JE House (2007) Principles of Chemical Kinetics,
Textbooks	2 edition, Academic Press /
	ISBN:978-0123567871
	G Price (1998) Thermodynamics of Chemical
	Processes (Oxford Chemistry Primer), Oxford
	University Press / ISBN:978-0198559634
	P Atkins (2009) Physical Chemistry, 9th Edition,
	Oxford University Press / ISBN:978-0199543372
References/Articles	
Course Description	This course gives fundamentals in surface and
	interface science. It covers definition of surface
	and interfaces, surface free energy, different types
	of interfaces, adsorption, capiliarity, molecular
	basics of surface activity and its application to
	adhesion, wetting, emulsion and colloids. Main
	surface characterisation techniques are to be
	taught in the course. The module includes lab
	work where the students get some experience in
	preparation and characterisation of materials
	surfaces.
Course Arrangement (Chapters/hours)	
(Chapters/hours)	General concepts (definition of surfaces and
	interfaces, surface free energy, adsorption)
	The molecular basis of surface activity
	Long range attractive forces
	Capillarity
	Solid surfaces
	Liquid-fluid interfaces
	_
	Adsorption at solid-liquid interfaces Emulsions and Colloids
	Wetting and Spreading

	Adhesion
	Charge transfer across interfaces
	Characterisation techniques
	-
Experimental & Practical	
Section	
Hours	The characterisation of surfaces and interfaces
	using one or more of the following techniques:
	Atomic force microscopy,
	Quartz crystal microbalance
	Contact angle measurement
Learning Outcomes	
	Students will develop knowledge regarding the
	characterisation of materials surfaces and
	interfaces
	Students will develop knowledge regarding the
	physio-chemical and topological nature of
	materials surfaces and interfaces
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%
()	

Module Title	Structural Characterisation
Summary Information	
Module Code	NXC5015
Class Hours/Credit(CN/UK)	56 Hours/3.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Spring
Teaching Profile	40 hours Lectures / 16 hours tutorial example classes
Course Type	Technical
Textbooks and References	PJ Goodhew, R. Beanland, FJ Humphreys (2000)
Textbooks	Electron microscopy and analysis, Taylor Francis ISBN 0748409688
	B.D.Cullity and S.R.Stock, (2001) Elements of X-ray Diffraction, 3rd Ed.
References/Articles	
Course Description Course Arrangement (Chapters/hours)	This course introduces the major techniques for materials characterisation using X-ray methods, electron beam instruments, scanning probe instruments and vibrational spectroscopy for engineering materials. The course presents the principles of electron beam instruments, their imaging modes, and the interaction of electrons and X-rays with solid matter, basic diffraction techniques to determine crystal structure, orientation and defects in crystals and the theory and use of analytical methods for determining the composition of materials. Investigation strategies are considered for characterising the structure and composition of engineering materials.
Chapter 1:	Waves and particles. Electro-magnetic radiation. Electronic structure of atoms, concept of binding energy. The wave/particle duality. Interaction of X-rays, electrons and atoms, interaction of X-rays and electrons with materials.
Chapter 2:	Electron Microscopy Electron beam generation, and control. Operation and function of electron microscopes. Image formation and interpretation.
Chapter 3:	Sample preparation for SEM. Secondary electron, backscattered electron and X-ray dot map image modes.

Chapter 4:	Sample preparation for TEM. Bright field, dark field mode for image enhancement. Dislocation contrast. Use of electron interactions to produce crystallographic data from TEM.
Chapter 5:	Scanning probe microscopy techniques: natural frequency of oscillation, principles of set-point and feedback, imaging modes in scanning probe microscopy, force distance curves.
Chapter 6:	X-ray and Electron Diffraction. X-ray generation and absorption of X-ray beams by materials. Derivation of Braggs Law relating wavelength and angle. Diffractometry using $\theta/2\theta$ geometry. Phase identification and quantification, calculation of lattice parameters and unit cell volumes. Analysis of crystal orientation, texture, residual stress, crystallite size in polymers.
Chapter 7:	Analytical techniques. X-ray spectroscopy and analysis, electron beam microanalysis, Auger electron spectroscopy and imaging, X-ray photoelectron spectroscopy. Data capture, display and interpretation.
Chapter 8:	Vibrational spectroscopy: Infra-red and Raman techniques, first principles calculations of molecular vibrational frequency, sample preparation, internal reflectance methods.
Experimental & Practical Section	16 hours of tutorial example classes
Hours	
Learning Outcomes	
Other Information	
Assessment Profile	

Grading Policy	100 grades
Coursework	
Practical experiments	
Examination (written)	

Module Title	Metals 1: Deformation and Strengthening
Summary Information	
Module Code	NXC5026
Class Hours/Credit(CN/UK)	56 Hours/3.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	40 hours Lectures / 16 hours metallography and hardness
	testing laboratory
Course Type	Technical
Textbooks and References	D Hull and D J Bacon (2001). Introduction to
Textbooks	Dislocations. 4th Edition. Pergamon Press.
References/Articles	
Course Description	This module modules studies the The plastic deformation
	of metals and other classes of materials; the
	characterisation and properties of dislocations and their
	relationships to plastic deformation; the influence of
	micro-structural defects on the behaviour of dislocations
	and on the mechanical properties; strengthening of
	metals by grain refinement, plastic deformation, and
	precipitation hardening; the study of strengthening
	mechanisms in specific metal alloys.
Course Arrangement	
(Chapters/hours)	
Introduction:	The deformation of crystalline materials; yield and
	fracture controlled behaviour; tensile testing; plastic
	instability and failure.
Chapter 1:	Properties of dislocations: introduction to dislocations;
	crystallography of cubic structures; resolved shear
	strain; Schmid factor; Burgers vector; screw, edge and
	mixed dislocations; movement of dislocations,
	relationship between dislocation movement and shear
	strain, conservative and non-conservative movement,
	jogs and kinks, line tension; dislocation multiplication,
	Frank Read source; introduction to strengthening

	mechanisms.
Chapter 2:	Stress field and force: stress tensor, stress field of edge, screw and mixed dislocations; elastic energy of a dislocations, dislocation dissociation and Frank's rule; forces on dislocations, Peierls stress; forces of interaction between dislocations.
Chapter 3:	Interaction of dislocations and obstacles: interaction with particles; interaction with other dislocations, strain/work hardening, annealing, recovery and recrystallization.
Chapter 4:	Deformation of single crystals and polycrystalline materials
Chapter 5:	Strengthening mechanisms: solid solution hardening (Cu-Ni); precipitation hardening (Al-Cu), particle cutting, Orowan mechanism; grain size (deformation of polycrystals), Hall-Petch relation; Von Mises criterion; dispersion hardening (metal matrix composites).
Chapter 6:	Effect of deformation conditions on plasticity: strain rate, stress dependence of dislocation velocity; temperature, thermal activation.
Chapter 7:	Dislocations in specific structures: BCC metals; FCC metal.
Experimental & Practical Section	16 hours of metallography and hardness testing laboratory
Hours	Bubble raft experiments
	Dislocation force calculations
Learning Outcomes	
Other Information	
Assessment Profile	
Grading Policy	100 grades

Coursework	
Practical experiments	
Examination (written)	

Module Title	Metals 2: Alloy Systems and Heat Treatment
Summary Information	
Module Code	NXC5036
Class Hours/Credit(CN/UK)	56 Hours/3.5 credits/15 credits
Responsible Institution	NPU
Opening Semester	Spring
Teaching Profile	40 hours Lectures / 16 hours metallography and hardness
	testing laboratory
Course Type	Technical
Textbooks and References	W J D Verhoeven (1975). Fundamentals of physical
Textbooks	metallurgy. John Wiley & Sons.
References/Articles	
Course Description Course Arrangement (Chapters/hours)	This module focuses on the major alloy systems used in engineering together with the principles of heat treatment process to develop specific properties of the metal. This course aims to provide students with the following: Alloy systems of the ferrous metals, copper based alloys, aluminium based alloys and titanium alloys; an introduction to the principle and process heat treatment of steel and nonferrous metals, toughening metallic materials. Heat treatment cycles are covered including the concept of time-temperature curves for the development of non-equilibrium phases. Relationships between heat treatment cycle, microstructure development and mechanical properties are studied.
Chapter 1: Treatment principles a	nd processes for steel
	Organizational changes during heating of steel
	Super cooled austenite transformation kinetics map
	Pearlite steel annealing and normalizing
	Steel hardening martensitic transformation
	Tempering transformation and steel

	Bainite steel austempering
	1 0
Chapter 2: Ferrous alloys	
	Tool steel
	Stainless steel
	Heat-resistant steel
Chapter 3: Principles and non-ferr	ous metal heat treatment process
	The process of recovery and recrystallization annealing
	Solid phase transformation annealing process
	Quenching and ageing
Chapter 4: Non-ferrous metals and	l alloys
	Aluminium and aluminium alloys
	Copper and copper alloys
	Magnesium and magnesium alloys
	Titanium and titanium alloys
	Nickel and nickel alloys
	Refractory metals and alloys
Chapter 5: Metal toughening	
	Strength metallic materials, ductility and toughness
	Strengthening mechanism
	Methods to improve the ductility and toughness
F	
Experimental & Practical Section	16 hours of metallography and hardness testing
Section	laboratory
Hours	
Learning Outcomes	
Other Information	

Assessment Profile	
Grading Policy	100 grades
Coursework	
Practical experiments	
Examination (written)	

Module Title	Materials Selection in Design
Summary Information	
Module Code	QXU6002
Class Hours/Credit(CN/UK)	64 hours/4 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours Lectures, 8 hours of tutorials, 6 hours practical
	classes/workshops, 10 hours supervised time in
	studio/workshop
Course Type	Technical
Textbooks and References	F A A Crane, J A Charles & Justin
Textbooks	Furness (1997). Selection and Use of Engineering
	Materials. 3rd Edition. Butterworths-Heinemann.
	/ ISBN:9780750632775
	M F Ashby (2011). Materials Selection in
	Mechanical Design. 4th. Butterworth-Heinemann,
	Oxford. TM100 ASH / ISBN:1856176630
References/Articles	
Course Description	This module builds on QXU4011 (Introduction to
	Engineering Materials) to develop materials
	selection skills appropriate for engineering
	applications. Introducing material selection
	concepts including processing constraints in
	design. An appreciation of the interaction of
	processing and material related cost
	considerations and the need to adopt a
	simultaneous engineering approach. The use of
	design guides such as Ashby diagrams is a key
	skill developed in the module.
Course Arrangement	N/A
(Chapters/hours)	
	The relative mechanical properties of the basic

	material categories covering: stiffness; strength;
	density; thermal properties; corrosion; wear;
	bio-compatibility and cost.
	Review of materials selection for structures and
	shapes using design charts and Ashby Diagrams.
	Overview of general materials manufacturing
	routes: forming; machining; casting; moulding;
	and fabrication.
	Design and manufacture with metals:
	Consideration of basic processes and finishing
	operations, joining and assembly methods.
	Design and manufacture with plastics and
	composites moulding, extrusion, pultrusion,
	filament winding; resin transfer moulding.
	Assembly routes including adhesion, ultrasonic
	welding and mechanical fastening.
	Design and manufacture with ceramics. Including
	slip casting, powder routes and sol-gel processes.
	The interaction between processing and geometry;
	materials databases and the selection of
	appropriate design data; the use of CAE; rapid
	prototyping.
	Economic factors. Impact of part cost due to:
	volume of production; tooling; raw materials;
	energy. Lifetime cost considerations: cost of
	ownership: operation; repair and maintenance.
	Case Studies – for example:
	a) General engineering: Selection of materials for
	automotive and aerospace components
	b) Biomedical engineering: Medical devices,
	orthopaedic implants or prosthetic heart valves.
	c) Offshore engineering: pipeline design.
Experimental & Practical	t) a monore angineering, piperine design.
Section Tractical	
Hours	
110 010	
Learning Outcomes	
	The module aims to provide an opportunity to:
	Explore materials selection by considering geometric
	and manufacturing possibilities in relation to the design
	01

	requirements.
	2. Consider costs both from the standpoint of capital and
	material costs.
	3. Embrace simultaneous engineering concepts ensuring
	that the design process, the selection
	of material and the choice of
	manufacturing routes are
	interdependent operations.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	12%
Practical experiments	Computing – practical skills assessment 8%
Examination (written)	80%

Module Title	Fatigue and Creep Failure
Summary Information	
Module Code	NXC6023
Class Hours/Credit(CN/UK)	48 Hours/3 credits/15 credits
Responsible Institution	NPU
Opening Semester	Spring
Teaching Profile	40 hours Lectures / 8 hours fatigue testing
Course Type	Technical
Textbooks and References	S.Suresh (1998) Fatigue of Materials, Cambridge
Textbooks	University Press, ISBN 978-0521578479
	R. W. Evans, B. Wilshire (1993) Introduction to Creep, Institute of Materials, ISBN 9780901462640
References/Articles	
Course Description Course Arrangement	This module provides the student with a basic understanding of the failure of materials due to long-term engineering service conditions. The mechanisms of failure are studied together with the empirical background to failure parameters and their use in design. The module includes: Failure of materials under cyclic loading, theories of fatigue, practical aspects of fatigue in engineering materials, high temperature deformation by dislocation movement and by diffusion, and the practical aspects of creep deformation. Conditions that lead to failure, design strategies to avoid them and prediction of design lifetimes.
(Chapters/hours)	
Chapter 1: Fatigue	Definitions of fatigue parameters. Fatigue tests and presentation of fatigue data. Cyclic hardening and softening. Fatigue crack nucleation and propagation. Influence of environment on fatigue properties. Design of fatigue resistant materials.
Chapter 2: Stress-corrosion cracking	Stress-corrosion cracking: conditions that lead to static fatigue, crack growth conditions and recognition static fatigue failure. Design for prevention of stress-corrosion cracking.
Chapter 3: Inspection and testing	Inspection and testing, non-destructive methods:

	ultrasonic inspection, magnetic inspection, acoustic
	emission monitoring. (show videos of examples)
Chapter 4: Lifetime prediction	Empirical laws of fatigue failure and lifetime prediction.
for fatigue	Paris Law, Cumulative damage law, Coffin-Manson
	law, inspection schedule, safe design life.
	ian, inspection senedate, said design inc.
Chapter 5: Creep	Creep: Phenomenological aspects of creep and
	definitions of creep parameters. Creep tests and
	presentation of creep data. Theories of creep and
	application to different materials. Creep fracture. Use of
	deformation mechanism maps. Development of creep
	resistant materials.
	resistant materials.
Chapter 6: Lifetime prediction	Lifetime prediction: Calculation of creep lifetime,
for creep	accelerated testing and prediction of product lifetime,
	safe design life.
	suit usign mis
Ever anima antal & Duratical	9 h aver of an atical laboratories
Experimental & Practical Section	8 hours of practical laboratories
Hours	
Hours	Fractography of fatigue and creep failures, optical
	microscopy / SEM
	Lifetime calculations from data
Learning Outcomes	
Other Information	-
Assessment Profile	100
Grading Policy	100 grades
Coursework	
Practical experiments	
Examination (written)	

Module Title	Fracture Mechanics
Summary Information	
Module Code	NXC6024
Class Hours/Credit(CN/UK)	48 Hours/3 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	40 hours Lectures / 8 hours fracture testing
Course Type	Technical
Textbooks and References	C.H Wang (1996) Introduction to Fracture Mechanics
Textbooks	DSTO-GD-0103 PR
	M. Janssen, J. Zuidema and R.J.H.Wanhill (2002) Fracture Mechanics 2nd ed. DUP Blue Print ISBN 978-9040722219
References/Articles	
Course Description Course Arrangement	This module provides the student with a basic understanding of the failure of materials due to cracking, the physics of fracture and fracture mechanics. The mechanisms of failure are studied together with the theoretical background to fracture parameters and their use in engineering applications. The module includes: Fracture mechanics concepts of crack extension force, strain energy release rate, stresses at ta crack tip, stress intensity factor, solutions for engineering problems, toughening mechanisms in materials and concept of crack resistance curves, materials design for fracture resistance.
(Chapters/hours)	Manufacturate of Control described and being
Chapter 1:	Morphological aspects of fracture: ductile and brittle failure and the factors influencing each type of failure. Fractography.
Chapter 2:	Morphological examples of different fracture types.
Chapter 3:	Fracture transitions.
Chapter 4:	Modes of failure and crack loading.
Chapter 5:	Linear-elastic fracture mechanics concepts:
	Thermodynamic concepts and generalised energy
	criterion. Griffith's equation. Fracture energy and crack
	extension force. Practical application of the compliance

method.
Use of matrices, determinants and eigenvalues and their application to stress and strain fields. Use of matrices, determinants and eigenvalues and their application to stress and strain fields. Plane stress and strain. Stress distribution at the tip of a crack, stress discontinuity. Stress intensity factor and its use in design and failure prediction. Influence of a plastic zone at the tip of a
crack. Elastic-plastic fracture mechanics: The critical crack tip opening displacement and J-integral concepts.
Development of tough materials: Toughness and influence of microstructure. Micro-mechanics of fracture and crack resistance concept, R-curves.
8 hours of practical laboratories
Fracture of glass slides experiment
Interpretation of fracture data
100 grades

Module Title	Composite Materials
Summary Information	
Module Code	QXU5030
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Spring
Teaching Profile	40 hours lectures, 16 hours tutorials
Course Type	Technical
Textbooks and References	D Hull (1996). An Introduction to Composite
Textbooks	Materials. 2nd Edition. Cambridge University
	Press. TM130HNC / ISBN:0521388554
References/Articles	
Course Description	This module examines the role of composites in modern engineering. Starting from the manufacture of glass fibres, carbon fibres, aramid fibres, polyethylene fibres and extending to the manufacturing of polymers composites using processes including for example resin transfer moulding, compression moulding and pultrusion. In addition to fibre reinforced polymer composites, the module will also consider particulate filled composite materials and high temperature metal matrix composite materials. The module will cover the theory that is used to predict the stiffness and strength of composite components, with emphasis on exploring the roles of the three different components encountered in a composite materials of fibre (filler), matrix and the interface.
Course Arrangement	
(Chapters/hours)	
	Manufacture of glass fibres, carbon fibres, aramid
	fibres, polyethylene fibres
	Exploring how the strength and stiffness of fibres
	is influenced by defects and molecular orientation
	Considering how effective adhesion to various
	polymer matrices at the interface in composites
	can be made and the role of coupling agents.
	The various different manufacturing methods
	used with composites including: processing of

	thermoset composites, filament winding, thermoforming, textile preforms, resin transfer
	moulding (RTM), pultrusion, unidirectional
	prepreg manufacturing, autoclave processing,
	resin transfer moulding, sheet moulding
	compound (SMC), processing of thermoplastic
	composites, long fibre injection moulding (LFT),
	glass-mat-thermoplastics (GMT), compression
	moulding.
	Provide a framework for understanding the cost of
	manufacture.
	Examine the joining techniques used with
	composite systems.
	Exploring how stiffness and strength change with
	fibre length and fibre orientation on failure modes
	in unidirectional composites.
	The use of laminate plate theory to predict the
	stiffness of angle-ply laminates.
	Composite design focussing on the influence of
	anisotropy on weight efficiency of composites
	versus metals, unidirectional versus
	quasi-isotropic laminates, and lightweight
	sandwich design.
	Tensile and shear modulus of unidirectional,
	cross-ply and angle-ply laminates.
	Failure modes in unidirectional composites
	(longitudinal, shear, transverse, compression).
	influence of fibre matrix adhesion (interface) on
	failure modes and strength of longitudinal and
	transversely loaded composites The critical fibra length, strain magnification
	The critical fibre length, strain magnification effects and the failure of short fibre composites.
	First and last ply failure modes in angle-ply
	laminates.
	Durability and fatigue behaviour of composites
	laminates versus metals.
	Milliance (Claus Hemis)
Experimental & Practical	N/A
Section	
Hours	
-	

Learning Outcomes	
	To allow students to understand the role of composites in modern engineering this module will focus on all aspects of materials selection, design and manufacturing with composites. The module will examine the use of fibre and particulate filled polymer systems as well as metal matrix composite systems. The module will focus on the use of composites used in aerospace engineering and other high tech uses such as in sports goods and automotive applications. The module will consider: 1. Material aspects such as fibres, matrices and interfaces 2. Manufacturing of polymer, ceramic and metal matrix composites 3. Design concepts a the micro- and macro-level as well as failure analysis of composite laminates 4. Joining, repair and inspection technologies
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	80%

Module Title	Environmental Properties of Materials
Summary Information	
Module Code	QXU6007
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours Lectures, 16 hours of tutorials/seminars
Course Type	Technical
Textbooks and References	David F. Ciambrone, (1997) Environmental Life
Textbooks	Cycle Analysis, CRC Press ISBN 9781566702140
References/Articles	
Course Description	This seminar based course will explore the economics of environmental management, as well as environmental politics, clean processing, recycling and eco-design, using a sophisticated life cycle analysis package. The course aims to integrate the knowledge acquired from a wide range and disparate set of different modules and in particular examine the whole life cycle environmental impact on the industrial process as a result of choosing a particular material, part or product in the design process. It is designed to equip design engineers in the future with the tools that will be required to make environmentally sound decisions in a continually changing and increasingly demanding legislative framework.
Course Arrangement	
(Chapters/hours)	
Introduction:	
Chapter 1:	Recycling - possibilities of recycling schemes for different types of materials like glasses, plastics and metals will be discussed.
Chapter 2:	Environmental politics - such as the EU end of life vehicle directive will be discussed as well as other political drivers for creating a sustainable society.
Chapter 3:	Ecodesign - the benefits of designing for recycling using a cradle to grave design methodology.
Chapter 4:	Examining in detail designs for single material or

	reduced number of materials systems that can be easily disassembled.
Chapter 5:	Life Cycle Analysis (LCA) - Detail of how the life cycle analysis is undertaken, including instruction in the use of appropriate life cycle analysis software.
F : (10 D : 1	
Experimental & Practical Section	
Hours	
Trouis	
Learning Outcomes	
	Students will be able to express their understanding in their responses to questions not notified in advance to the satisfaction of an internal or external examiner appointed by the board of examiners. The achievement of a truly sustainable society requires fundamental changes in the way we develop, including the development of new environmentally safe materials and processing technologies. At the end of this module students will understand the environmental impact factors for a wide range of materials at different stages of their life. These stages include synthesis, production, use, recycling, and final disposal. Students will learn to deal with the complex interaction between the product and the environment during its life cycle and explore some of the critical guidelines and strategies that can be used to improve the environmental and commercial performance of products.
Other Information	
Assessment Profile	
Grading Policy	7
Coursework	Report 20%
Practical experiments	

Examination (written)	2.5 hours 80%

Module Title	Ceramics
Summary Information	
Module Code	QXU6022
Class Hours/Credit(CN/UK)	64 Hours/4 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours Lectures / 16 hours tutorial example classes /8
	hours practical laboratories
Course Type	Technical
Textbooks and References	Yet-Ming Chiang, Dunbar P. Birnie, W. David Kingery,
Textbooks	Physical Ceramics: Principles for Ceramic Science and
	Engineering, ISBN: 978-0-471-59873-2
References/Articles	
Course Description	This module covers properties and applications of
	ceramics, commercial importance of, and future trends
	in, ceramics. It examines what crystallographic
	structures ceramics form and why, identifies important
	structures and their corresponding physical properties,
	and covers phase equilibria, electronic properties,
	structural properties, and processing and microsctructure.
Course Arrangement	
(Chapters/hours)	
Chapter 1:	
Chapter 2:	
Chapter 3:	
Chapter 4:	
Chapter 5:	
Chapter 6:	
Even onime out of the Description	12 house of anoticel laborate ::
Experimental & Practical Section	12 hours of practical laboratories
Section	

Hours	
Learning Outcomes	
	Review to physical and structural origin of the mechanical, electrical and optical properties of ceramics. Relate this knowledge to their applications and commercial importance. Review the processing and characterisation of ceramics. (Particular reference will be made to the following structural ceramics: alumina; silicon nitride; zirconia; and silicon carbide.) Review of functional ceramics: varistors; ferroelectrics; piezoelectrics; pyroelectrics; optoelectronics; and ferrites. Throughout the module the students will develop their knowledge so that they can relate structure, properties and applications.
Other Information	
Assessment Profile	
Grading Policy	100 grades
Coursework	Written assignment 15%
Practical experiments	Practical report 15%
Examination (written)	2.5 hours 70%

Module Title	Manufacturing Processes
Summary Information	
Module Code	NXC6025
Class Hours/Credit(CN/UK)	64 Hours/4 credits/15 credits
Responsible Institution	NPU
Opening Semester	Fall
Teaching Profile	40 hours Lectures / 14 hours tutorial example classes / 10
	hours processing practice
Course Type	Technical
Textbooks and References	Lyndon Edwards, Mark Endean (1990) Manufacturing
Textbooks	with materials, Butterworths
References/Articles	
Course Description	This module examines both from a technological as well as from a theoretical viewpoint how a range of different materials such as metal alloys, ceramics, glasses are processed. This includes a wide range of different shaping, fabrication, and product-evaluation processes. The course will examine how phase transformation, microstructure, stress analysis, diffusion, plastic deformation are involved during the manufacture of different products. The course provides a development of both fundamental and technological studies of shaping, fabrication, and product-evaluation processes. The course applies phase transformation, microstructure, stress analysis, diffusion, plastic deformation to the manufacture of different products. Examples of current practices in the automobile, aerospace and bio-medical industries are illustrated, where appropriate, to enhance student's technological awareness.
Course Arrangement	student's technological awareness.
(Chapters/hours)	
Chapter 1:	Casting: nucleation, crystal growth, solidification, segregation, ingot microstructure, casting defects, casting processes, temperature and recrystallization.
Chapter 2:	Forming: element of plasticity and deformation mechanics, selected methods of analysis of simple forming processes, element of transport properties and flow (hot forming), extrusion, forging.
Chapter 3:	Joining and Welding: fusion welding, solid-state welding, effect of welding on materials microstructure, brazing and soldering.

Chapter 4:	Deposition methods of electrolysis, physical vapour or chemical vapour deposition. Thin films and their microstructure, thermal spraying.
Chapter 5:	Powder metallurgy and mechanical alloying methods,
	Consolidation of powder solid mixing.
Chapter 6:	Additive manufacturing methods: Rapid Prototyping.
Experimental & Practical	10 hours of practical laboratories
Section	
Hours	
Learning Outcomes	
Other Information	
Assessment Profile	
Grading Policy	100 grades
Coursework	
Practical experiments	
Examination (written)	

Module Title	Renewable Energy Materials
Summary Information	- G
Module Code	QXU7027
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours Lectures, 16 hours of tutorials/seminars
Course Type	Technical
Textbooks and References	B Sorensen (2010) Renewable Energy 4th Ed,
Textbooks	Academic Press ISBN :9780123750259
References/Articles	
Course Description	This course is designed to develop the tools required to apply a fundamental understanding of the application of new energy and renewable energy systems to the problems faced by climate change and global energy security. Particular focus is on the application of materials for the development of novel and new energy recovery systems such as nanostructured surfaces for solar harvesting and ultra-tough composites for wind turbines.
Course Arrangement	turomes.
(Chapters/hours)	
Chapter 1:	Introduction to functional materials for energy
Chapter 2:	Materials for energy generation and storage
Chapter 3:	Materials structures and functional properties
Chapter 4:	Materials engineering and structural modifications
Chapter 5:	Bulk and surface defects and properties of materials
Chapter 6:	Hydrogen and hydrogen generation
Chapter 7:	Materials for solar energy generation
Chapter 8:	Materials for energy catalysis
Chapter 9:	Materials for hydrogen storage
Chapter 10:	Future challenges for energy materials
Experimental & Practical Section Hours	N/A

Learning Outcomes	
	At the end of the course the students will gain knowledge of materials issues in energy technologies, the importance of materials crystallinity, defects, doping, and catalysis on functional properties, and techniques that can be adopted to tailor materials and product performance. Particular examples of applications will be highlighted for solar power conversion, biomass to electricity and biofuels, and hydrogen storage materials and systems. All students will have a thorough understanding of how materials engineering can underpin the success of energytechnologies.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	20%
Practical experiments	
Examination (written)	2.5 hours 80%

Module Title	Experiments in Materials 1
Summary Information	1
Module Code	QXU4007
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL
Opening Semester	Fall
Teaching Profile	40 hours of laboratory practicals, 16 hours of tutorials
Course Type	Technical
Textbooks and References	
Textbooks	
References/Articles	
Course Description	This module aims to develop in the students an awareness of all aspects of the subject and professional life in the second year of the degree programme, with a follow-on module in the third year. Cognitive and transferable skills are developed in an integrated series of seminars, practical exercises and problem based learning case studies. All of the exercises draw on subject matter being taught within core course units in the relevant year.
Course Arrangement	N/A
(Chapters/hours)	
-	
Experimental & Practical Section	
Hours	Scientific and laboratory practice
	Collection and recording of data
	Presentation of data
	Statistical methods, Significance tests,
	Uncertainty of measurement
	Reporting

	Scientific writing style
	Oral presentation
	Literature searching
	Problem solving strategies
	Creative thinking methods
	Group working methods microscopy
	Measurements of length, angle, time temperature,
	electrical resistivity
	Introduction to materials characterisation
	techniques
	Finding relationships from data
	Simple Structure-property relations
	Materials selection criterion and simple design
	exercises
Learning Outcomes	
	Students will learn how to measure, length, angle,
	temperature and electrical resistivity of a range of
	materials.
	Students will learn how to use microscopes and other
	characterisation techniques.
	Students will learn to recognise and characterise material behaviour.
Other Information	beliaviour.
Other information	
Assessment Profile	
Grading Policy	
Coursework	100%
Practical experiments	
Examination (written)	

Module Title	Experiments in Materials 2
Summary Information	
Module Code	QXU5017
Class Hours/Credit(CN/UK)	56 hours/3.5 credits/15 credits
Responsible Institution	QMUL and NPU
Opening Semester	Spring
Teaching Profile	40 hours of laboratory practicals, 16 hours of tutorials
Course Type	Technical
Textbooks and References	J.J.C.Busfield and T. Peijs, (2003), Learning
Textbooks	Materials in a Problem Based Course, UK Centre for Materials Education, Liverpool, UK
	C.Chatfield (1983), Statistics for Technology: A course in applied statistics, 3rd edition Chapman &Hall,/CRC Florida USA
References/Articles	
Course Description	This module aims to develop in the students an awareness of all aspects of the subject and professional life in the second year of the degree programme, building on the module in the second year. Cognitive and transferable skills are developed in an integrated series of seminars, practical exercises and problem based learning case studies. All of the exercises draw on subject matter being taught within core course units in the relevant year.
Course Arrangement (Chapters/hours)	N/A
Experimental & Practical Section	
Hours	Scientific and laboratory practice
	Collection and recording of data
	Presentation of data
	Statistical methods, Significance tests,
	Uncertainty of measurement
	Reporting
	Scientific writing style
	Oral presentation
	Literature searching

	Problem solving strategies
	Creative thinking methods
	Group working methods microscopy
	Measurements of length, angle, time temperature,
	electrical resistivity
	Introduction to materials characterisation
	techniques
	Finding relationships from data
	Simple Structure-property relations
	Materials selection criterion and simple design
	exercises
Learning Outcomes	
	The aim of this module is to develop problem solving strategies relevant to materials engineering and will enable students to express their understanding in written reports and oral presentations. Students will be able to search the literature and synthesize ideas from sources of information and develop their scientific practice and be able to collect, record and interpret complex sets of experimental data and use statistical methods to express uncertainty of measurements and scatter and significance in data. Students will be able to characterse material systems using both simple methods and advanced characterisation techniques. Students will gain experience with the concept of quality management systems and design control.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	80% (Reports – 2 x 20%, Oral presentation 20%, Written
	assignment 20%)
Practical experiments	Practical skills assessment 20%
Examination (written)	

Module Title	Materials Project
Summary Information	·
Module Code	QXU6021
Class Hours/Credit(CN/UK)	128 hours/8 credits/15 credits
Responsible Institution	QMUL and NPU
Opening Semester	Spring
Teaching Profile	
Course Type	Technical
Textbooks and References	Individual reading for subject of project
Textbooks	
References/Articles	
Course Description	The purpose of the project will be to provide in depth knowledge of a particular research area in Materials Science. There will be no set rules concerning format, which will depend on the nature of the subject and personal choice. The project will typically involve experimentation which will be carried out in an associated subject area chosen by a member of academic staff (supervisor). Time for experimentation is limited and considerable emphasis will be placed on the analysis, interpretation and discussion of the experimental results obtained.
Course Arrangement	N/A
(Chapters/hours)	
Experimental & Practical	
Section	
Hours	A prescribed syllabus is not available for this unit. The unit draws on and extends the transferable skills listed in the Departmental Skills Chart. The content and trajectory of individual projects are subject to the guidance of the academic advisors.

Learning Outcomes	
	The aim of this module is to develop in the students the ability to conduct research into a particular materials science topic. They will use and develop the skills learned in Experiments in Materials 1 and 2, searching the literature, conducting practical experiments, analysing the results using statistical analysis techniques, and expressing their understanding in a written report and oral presentation.
Other Information	
Assessment Profile	
Grading Policy	
Coursework	70% Dissertation
Practical experiments	Oral presentation 30%
Examination (written)	